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FOREWORD

This report documents and summarizes work accomplished in the Solu-
tions of Systems of Nonlinear Equations, Contract NAS8-20178. It includes a
complete discussion of the theory, a bibliography of the literature consulted
during the study, a user's manual and a programmer's manual of the resulting

computer programs.

This work was performed by Lockheed Missiles & Space Company,
Huntsville Research & Engineering Center, for the Aero-Astrodynamics
Laboratory of the George C. Marshall Space Flight Center. Contributors

to this study were K. L. Remmler, D, W. Cawood, J. A. Stanton, and
R. Hill.
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SUMMARY

This report presents the results of a study to develop a method and
computer program for solving an arbitrary, simulataneous system of nonlinear
algebraic and transcendential equations. A review of the literature and the
theory regarding some particular methods (Newton-Raphson, False Position,
Fletcher-Powell, Simplex Search, Sequential Minimax Search, and Contour
Mapping are discussed. Computation schemes for digital computer facilities
are emphasized, however, the feasibility and attractive features of hybrid
computation schemes are also discussed. The final result of this study is a
composite computer program which encompasses a ''limited" spe'ctrum of
basically different numerical methods - gradient, minimization, and search
techniques. Test results are included as a basis for comparison of the
different methods.,
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Section 1
INTRODUCTION

The analysis of nonlinear systems has become a necessity in numerous
problem areas associated with the development of aerospace vehicles. Conse-
quently, equations requiring solution are quite varied -and seldom are of a

form for which a known solution exists.

One particular problem area of interest is the analysis of nonlinear
dynamical system in which the solution of nonlinear differential equations
is attempted by the Ritz Averaging Method. This procedure is discussed in
References 1 and 2. In applying the Ritz Averaging Method, one is confronted
by the problem of determining the solution to a simultaneous system of non-
linear algebraic and transcendental equations. The dynamicai systems to
which this technique can be applied are presumably quite numerous, however,
specific examples for which it has proven to be useful are nonlinear vibration
and control system problems. Due to the complexity and peculiar character-
istics usually associated with nonlinear dynamical systems, a capability for
solving widely diverse classes of nonlinear equations is an essential require-

ment.

There are many methods that have been formulated for solving nonlinear
equations and the variations or modifications to these methods are numerous.
One very logical explanation for the existence of so many methods and varia-
tions thereof is simply that any one method is frequently not suited to a partic-

ular system of equations.
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Section 2

TECHNICAL DISCUSSION

An important by-product of this study contract has been the knowledge,
insight, and notions gained through a thorough review of the literature on
methods for solving nonlinear equations. The first subsection of this discus-
sion is therefore devoted to a brief survey of the numerous methods and vari-
ations thereof that had been discovered in the literature., Many of the methods
included in this survey were developed for minimization problems; therefore
the authors may not have had their application to solving nonlinear equations
in mind. They are indeed applicable, however, and offer some very good

approaches to the problem at hand.

The essential purpose of the literature survey was to find the techniques,
or combination of techniques that would provide a basis for accomplishing the
contractual objective - the objective being a computer program for solving an
arbitrary simultaneous system of nonlinear algebraic and transcendential
equations. No one method appeared to be superior than all others in being
completely general regarding its application to arbitrary equations, the
selection of a particular method being dictated by the particular system of
equations. Hence a combination of methods encompassing to a ''limited"
extent the complete spectrum of basically different methods, was chosen

as the best approach.

The major factors influencing the selection of these particular methods

were
1. simplicity of the logic and computation scheme
2, reliability regarding convergence
3. accuracy
4, popularity
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The significance of these factors is obvious, however, the "yardstick' for
measuring them is nebulous and often arbitrary. Therefore some equally good
(possibly better) techniques were excluded solely to preclude an unwieldly
computer program. Some specific comments relating to these factors are
included in Section 2.1. A detailed discussion of the theory for particular

techniques selected is provided in Section 2.2.

Another major factor which generally influences the choice of a particular
method is the particular computer facility available - whether it be analog,
hybrid, or digital, as well as the size and speed limitations. The facility for
which the present method has been developed is the NASA/MSFC Computation
Laboratory's IBM 7094, Since some techniques appear to be especially attrac-
tive for repetitive analog and hybrid computation, a general discussion of such

computation schemes is included in Section 2.3.

Generality of the computer program has been emphasized. However,
the requirement for such a program is strengthened by the existence of parti-
cular applications. Section 2.4 provides a typical example of an engineering
problem whose solution demands an efficient technique such as the one devel-

oped in this study.

2.1 A GENERAL SURVEY OF METHODS FOR SOLVING NONLINEAR
EQUATIONS

A bibliography of selected articles consulted in the performance of this
study is provided as Appendix A of this report. This is not a complete list
of all the literature available on the subject; however, it is an attempt to
include the most significant work representing a complete spectrum of different
approaches and major variations thereof. A basic division of the techniques
might be as follows: (1) gradient methods, (2) direct search, and (3) random
search, One approach frequently employed, which can be accomplished by
techniques classified in any one of these three categories, is to replace the
system of equations by the problem of finding the minimum of a single function.

The Fletcher-Powell and Simplex Methods are examples of this approach., All
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three of the basic techniques are amenable to both digital, and hybrid computers.
In general, however, the search methods appear more attractive when repetitive

analog and hybrid computers are available,

Some general references such as textbooks and survey papers, as well
as articles concerning specific techniques, are included in this bibliography.
Brooks (5), Freudenstein (15), Hochstrasser (17), Householder (19), Levine (24),
Ostrowski (32), and Saaty (36) describe fundamental theory and give a general
survey of classical methods, These include for example the Newton-Raphson
Method, Regula-Falsi, Graeffe Method, steepest descent, relaxation methods,
and random search methods. Spang (38) provides the most comprehensive
survey and complete review, Brooks (5) attempts to compare various methods

on an experimental basis.

Specific gradient techniques are presented by Barnes (1), Booth (3),
Broyden (6), Crockett (7), Curry (8), Davidon (9), Fletcher (13) and (14),
Kizner (23), Powell (33) and (34), Rosenbrock (35), Shah (37), and Wolfe (41).
The method proposed by Broyden (6), is a modification to the Newton-Raphson
technique which would presumably result in a savings of computer time with
some loss in accuracy. Since the computer time of the Newton-Raphson rou-
tine in the present program appears to be negligible, this modification was not
employed. Gradient methods appear to be the most abundant in the literature
and are employed quite widely in the aerospace industry for trajectory and
system optimization studies. The three most popular methods for solving
systems of algebraic equations appear to be the Newton-Raphson, False Posi-

tion, and Fletcher-Powell methods. The Fletcher-Powell method is however,

. rather new and hence not nearly as proven a technique as many others., There-

fore its selection was not without some anxiety. The final results obtained

with this program, however, were in general, better than those obtained from

any of the other methods.

Various search strategies are presented by Berman (2), Himsworth (16),
Hooke (18), Johnson (20), Kiefer (21), Fletcher (12) and (22), Nelder (30), and
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and Swann (39). An advantage of search methods is that they do not require

the computation of a gradient; hence, regularity and continuity conditions (such
as the existence of derivatives) are not required of the function to be minimized.
If the gradient of a function cannot be determined analytically or by a finite
difference approximation, a search technique is necessary. Johnson and Kiefer
present a sequential procedure, which involves Fibonacci numbers, for locating
the minimum of a unimodal function. This is an optimal procedure in that any
other sequential search may require a larger number of evaluations. Berman
presents a family of procedures which is simpler than that proposed by
Johnson and Kiefer, and makes the claim that these procedures require about
the same number of evaluations as the Fibonacci method. Himsworth and
Nelder discuss the application of a sequential search using a simplex. The
simplex method proposed by Nelder and Mead is included in the composite
computer program and a complete description of this method is given in the
sequel. This particular method was selected because of its simplicity and the
immediate success that was achieved in its appliéation to typical problems.
Hooke presents a search technique which combines the aspects of both the
gradient and univariate search techniques. After each point, a univariate
search is made around that point to determinethe direction to the minimum,

A ''pattern move'" is then made in this direction. Fletcher makes a comparison

of a number of methods, including the search technique proposed by Swann.

Some random search techniques are discussed by Brooks (4), Favreau (10)
and (11), Mitchell (28), and Munson (29). Brooks gives a general discussion of
the random method and defines three types of random search: (1) simple random
methods, (2) stratified random method, and (3) creeping random method. Favreau
and Munson present techniques for implementing random search on the analog
computer. A hybrid computer technique is presented by Mitchell which employs
digital logic to implement different random search strategies and step-size changes.
Random search methods are preferred for poorly behaved functions containing
discontinuities or nonlinearities. These are the less elegant and optimal of all
the techniques, however, they are reliable and practical if high speed computers
are available. The modern repetitive digital and hybrid computers offer very

attractive implementation possibilities for these techniques.

5
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Contour mapping appears to be very popular as a desirable tool, however,
automatic techniques for achieving these maps appear to be lacking (at least,
in the literature) McCue (25), (26) and (27) has developed such a technique for
two parameter optimization problems, Since a similar computer routine has
been included in the composite program, a complete description is provided in
the sequel, This is a very useful tool when difficulties are encountered in
computing the roots. It may be employed to determine the number of roots,
their location, division between closely spaced roots, and certain features of
the function such as valleys, ridges and saddle points, which would hamper

convergence.

The final conclusion obtained from the review as well as work performed
in this study is that further development is required in the area of techniques
for determining certain features of the equations to be solved. The justifica-

tion for this conclusion is based on the following requirements:

1. The selection of a particular method for a part1cular function is
frequently essential,

2. An initial guess for the solution is essential for all methods.

Without these additional techniques it can be extremely difficult, if not impos-

sible in some instances, to successfully apply any of the methods.
2,2 REVIEW OF SOME PARTICULAR METHODS

The following subsections discuss in some detail those methods which
were most thoroughly examined during the study contract. For the most part,
these include the methods employed in the composite computer program:
Newton-Raphson, Fletcher-Powell, Simplex Method, and Contour Mapping.
The other methods discussed in detail are the method of False Position and

the Sequential Minimax Search.

The principal reason for including the method of False Position (known

as Regula-Falsi) is that it is one of the oldest and best known methods. A
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computer program, user's manual, and program's listing has also been
included (see Appendixes B-2 and C-2), however, it was not included in the
composite program. The reasons for excluding it from the composite program
were (1) its similarity to the Newton-Raphson method, and (2) the performance
of the computer program was, in general, not nearly as good as that of the

Newton-Raphson computer program.

The Newton-Raphson and Fletcher-Powell methods are both gradient
techniques, however, the Fletcher-Powell method differs in that it is a
minimization procedure and solves for the roots by forming a single function

from the system of equations,

The sequential minimax search was considered in detail because it does
not require an initial estimate sufficiently close to the root in question, while
this is an essential requirement of all the other methods. The present formu-
lation of the method, however, is limited to unimodal functions with one inde-
pendent variable. Generalization of this method appears to be quite complicated
and the effort required to develop such a generalization would be extensive.

Therefore, a computer program was not attempted.
2.2.1 Newton-Raphson

Suppose that a is the desired root of the equation f(x) = 0; let x) be an

abscissa near enough to @ that the tangent at P[xl, f(x, )] cuts the axis nearer

to @ than 3L This point of intersection (Figure 1) is the second approximation

of Xye
Since the tangent at P is
y - f(x;) = {x,) [x - xl]

it is easy to find that

X, = X -f(xl)/f'(xl) .
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Using X, as a starting point, the tangent at [xz, f(xz)] will give
X3 = X, - f(xz)/f'(xz)

The process can be repeated, and the root a is approached with great speed.
It is often very convenient to use the rule-of-thumb that if the correction term
f(xi)/f'(xi) begins with n zeros after the decimal point, then the result is
correct to 2n decimals, i.e.,, the number of correct decimals roughly doubles

at each stage.

Another worthwhile feature of the Newton-Raphson process is the fact
that it is self-correcting for minor errors. Any errors made in determining
X, will merely give a different point from which to draw the second tangent;

this will not affect the limit @ approached by the sequence Xps Xy X3,% "%

Newton-Raphson is easily extended to simultaneous solution of systems

of equations. Considering the system
fl(xl, ooy xn) = 0

. (1)

fn(xl, ceey xn) = 0

where n 2 20

.
we obtain corrections Axl, ooy Axn for the estimates to the roots Xy poens

x 80 that new estimates may be obtained by

x = x + Ax
' laen
X, =Xy o tdx,
(i) (i-1) (i)
(2)
x = X +Axn
i) (i-1) (i)

9
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where

(i) “{) (1)
: (3)

By expanding (3) by Taylor's theorem for a function of n-variables we get
at the it iteration

F. +F. +... + F.
X X X

1 2 n

-fl(xl, oy eees xn)

]
+
Hy

%
+
<+

x"']
!

'fz(xlr xZ' ey xn)

n n n
Fx + Fx +.oc + Fx -"féxl, xz, o0 0oy xn)
1 2 n
where
of of
F1 = b ax., F2 = 2 ax., etc.
X ax1 1 3 <’:>x1 1

(i-1) (i-1)

We now have the matrix form AX = B where

— -

ohh %

ax1 axz {;vxn
A =] .

axl ax2 aan

10
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-fl(xl’ xzv ey xn)

"fz(xlv xZ’ ooy xn)
B = .

-fn(xl’ xzv LI ) xn)

L -

We then solve for x using the Gauss-Jordan reductiontechnique thereby obtaining
ij (j=1, ..., n). We then reiterate until all ij < € for some prescribed

accuracy €.

2.2.2 False Position

One of the oldest methods of finding roots is known as Regula-Falsi
(method of False Position). It requires a knowledge of the approximate
location of the root and the computation of two values f(a) and f(b), where
a<r<b, r being a root of f(x) = 0 (Figure 2). If a and b are close
enough to r so that no other root lies between a and b, then by continuity
f(a) and f(b) are of opposite sign. If we replace the arc AB by the chord AB,
we obtain an abscissa c which is closer to r than A was (in Figure 2, f(c)
is negative), The value of c is obviously [af(b) - bf(a)]/[f(b) - f(a)]. The
process may be repeated using the chord BC. Hanry and Bernede (Refer-
ence 3) have developed a computer scheme using Regula-Falsi which is
capable of solution of ten equation systems, providing transcendential terms
are not numerous. Accuracy of solution and computer execution time are

not acceptable above the five-equation system.

11 lv'
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2.2.3 Fletcher-Powell Method

Minimization procedures may be employed to solve systems of non-

linear equations. Given the system

i
o

£ (&)

£ (x)

0 (4)
where x is the vector with components Xireaor X, the function f(x) is formed

£(%) 2

2 ,- -
5
£7) + .0 + £ T (x) (5)
The function in (5) is non-negative and achieves the minimum value zero
only when the system (4) is satisfied. The value x which minimizes (5)
therefore satisfies (4) (i.e., it is a root of the system). Hence (4) may

be solved by locating the minimum of (5).

The theory of this method has been developed for quadratic functions
of n variables. It is known that even if the function to be minimized is
non-quadratic, the second-order terms of the Taylor series expansion
dominate in the vicinity of the minimum. Therefore the only methods
which will converge quickly for a general function are those which will

guarantee to find the minimum of a general quadratic speedily.

Let it be required to minimize a quadratic function of the n variables
T -
i Xor eees X o Denote the column vector (xl, coes xn) by x. The

quadratic form to be minimized may be written

flx) = b+ X a;x; + i3 Gi' X, X
1 i j J J R
- b+alx + 1xTgx (6)
13
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In this representation, b is a scalar constant, ET is the row vector (a;,... .an)
and G is the non-singular, symmetric matrix with elements Gij' The gradient

of the function f at the point X is
glx) = a+ Gx (7)
At the minimum point ;‘m the gradient vanishes, so that

0=5+G;:m A (8)

Subtracting (8) from (7) and pre-multiplying by G~! one finds

% -&g,= G7le® (9)
as the displacement between the point x and the minimum point im. Clearly,

if one were interested in the minimization of quadratic functions only, one

would simply compute ;cmdirectly from (9). Inasmuch as this of course

would not provide the correct answer when the given function is non-quadratic,
the following iterative procedure, in which G_1 is not evaluated directly, is
employed for general functions. If the function happens to be quadratic (in n .
variables) the procedure converges to the minimum in precisely n steps,

and the method in this case requires about the same amount of computer

time as the direct use of Equation (9). For non-quadratic functions, more

than n steps will be required. The method is as follows:

1. Starting with an initial estimate % ° of the minimum compute the

function f(x°) and the gradient g(x°) = g° for brevity.
2. Sets® = -H%g
The matrix H® is any positive definite symmetric matrix (of dimension

n x n). It is convenient to let H® = I. This will cause the initial direction

in the descent process (Step 3) to be along the line of steepest descent.

14
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3. Move from the point x° along the line x° + As ° until

f(x ©

@®, which can be shown to be positive.

+ As o) is a minimum with respect to A. Let the critical value of Abe

4, Seto® = a°s

-0-0T o-0-0T_.o
8.  Define Al - 2 ¢ gl _-Hy 'y "H
-oT -0 -oT_o-0
g "y y "Hy
and set H1 = Al + B1
9. Repeat the entire process proceeding from the point %!, with the

. -1 . .
gradient g and matrix Hl. Continue in this way.

The predicted absolute distance from the minimum is (from Eq. 9)

. T ._1/2
di 3 [él G"'l G-lél]

T /2
~ (s s )

The last line of this equation comes from the definition §i = —Hiéi (Step 2

of the procedure) and the fact that Hi tends to G-l. The procedure just
outlined may be terminated when the distance di is less than some prescribed
amount, or alternatively when every component of §i is less than a prescribed
accuracy. Additional safeguards stated in Reference 4 are to work through at

least n iterations and to apply the tests to o' as well as 87,

15
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The following points with respect to the Fletcher-Powell Method are

proved in Reference-4:

1. The method is stable, in that the function to be minimized is

decreased by each step.

2. For quadratic functions, the minimum is found in n iterations,

and Hn = G-I.

The procedure used for implementing Step 3, that is the determination
of the minimum of f along the line }—:i + )\Ei requires the calculation of the
function and the gradient at the point ;cl and a point ;ci + )\Qi on this line.
Cubic interpolation is used to locate the minimum of the function along the

line.
2.2.4 Simplex Search Method

Various search routines for locating the minimum (or maximum) of a
function have been devised. These are based upon the principle of evaluating
the function at points selected according to a certain strategy., Under the
proper circumstances these procedures converge to the minimum or maxi-

mum in question,

The celebrated search method for functions of a single variable is that
due to J. Kiefer (Reference 5), This method requires that the function be
unimodal; i.e., that there be a single maximum and that the function be
strictly increasing to the left and strictly decreasing to the right of the maxi-
mum, For a specified number of function evaluations to be made, the pro-
cedure provides an interval of smallest length (in the €-minimax sense
defined in Reference 5) containing the maximum, the points being selected

according to the Fibonnacci sequence, : '

16
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For functions of several variables, D, J, Newman (Reference 6) gives
a procedure for locating the maximum based upon evaluating the function at
a minimum number of points, If k is the number of independent variables,
a unit cube containing the maximum is selected in k-space., The method
determines a point for which the value of the function dominates all function
values on the (n + 1)k lattice points, n being arbitrary., Unimodality is postu-
lated and the author is explicit for the case of two variables., Hooke and
Jeeves in Reference 7 describe direct search and pattern search techniques,
An elegant simplex method described by Nelder and Mead (Reference 8),
having the advantage of a simple logic, has been-included in the composite

program,

The simplex method is diagrammed in the flow chart in Apﬁendix C-1 for
a function of an arbitrary number of variables, The method may be described
as follows., One starts by selecting the vertices of a simplex (see Reference
9 for example for a clear definition) in the k-dimensional space of the function
to be minimized. In two variables this means selecting the three vertices of a
non-degenerate triangle; in three variables it means picking the vertices of a
non-degenerate tetrahedron, etc. The simplex should preferably be located
not too far from the position of the minimum which is being sought. Denote

the k+1 points by P_, ..., Pk:

Compute yo=f(P°), cees Vi S f(Pk) where f is the function to be mini-
mized. Denote the maximum of these numbers by yh=f(Ph) and the minimum

by \/a f(Pl)' Compute the centroid of the set of all the k+1 points excluding
the highest., Ph:

Replace Py, by P* defined by

p* = (1 +a)P - P, (a = reflection coefficient, @ > 0)

17
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where P: 1s on the opposite side of P from Ph and on the line joining them.
Compute y = f(P )e

*,

Iy < y, anew minimum has been determined and therefore one

. . . . . *%
decides to move further in the same direction by expanding to a new point P

¢ 3% b —
P = (1+y)P -7P
whére Y >0 and 1 + ¥ = expansion coefficient. Compute y = f(P ). I
y "< Yy replace Yh by y - (all other k points of the original simplex remain
unaltered). Restart the process, again labehng the high point and the low
Sesk
point of this new simplex Vi and Y,l Ify > Yy the expansion has failed.

In that case, remove the point p* , replace Ph by P , and restart the process.

*
However, if the point P determined by the reflection process was such that
h should be defined as either the old p, or

%

Yy >y, for alli # h, then a new P
% .

P (whichever has the lower y value) and form

ek

= BP, +(1-8) P

ek —
This is a contraction, the point P being closer to P than P, . The quantity
%
B is known as the contraction coefficient, and 0 < <1, Computey =y(P ).

3k Gk
Ify < Yh then P, is replaced by P and the process is restarted. However,

h
%

if y* > Yy the contraction has failed, in which case all Pi's are replaced by
%(l’—"i + Pl) and the process is restarted, The iteration continues until the

minimum is reached,

Figure 3 illustrates this method for the solution of the system of

equations

H
o

x +y -11

il
o

x+y2— 7

18



LMSC/HREC A783333

(3, -1) (3.3, -1.0) (3.9, -1.0) (4, -1)
@ \ 4 9
| 14.7
6.76
®4.63
(3, -1.3) (3.6, -1.3)
’ . ®
16.2 4% 3.36
[ J
- 13,0

° ®.0

1.33
{ ]
.526

® 456
Minimum
™ ¢.06
2.46
®).84 .3
3, -2) ' (4, -2)

Figure 3 - Solution of the System of Equations <%+ y-11=0,

x+y2 -7=0

19
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which is accomplished by minimizing the function

fy) = CHy-11)% v x+y -1°

The three initial simplex vertices are selected as (3, -1.3), (3.3, -1.0),

(3.6, - 1.3). After 39 iterations the procedure gives (3.5844284, -1.8481265)
for the minimum point. The figure shows the initial simplex and points that
were determined as a result of the reflection, expansion, and contraction
steps that take place as a result of the method described. The value of the

function is indicated next to each point,

To ensure that the simplex method will not seek an incorrect minimum
point, a unit cube in k-space should be determined which contains the desired
minimum and the function should be redefined with some arbitrarily highvalue
on the outside of the cube. Any attempt to wander outside this region will
cause the process to return to the inside of the cube and converge to the de-

sired minimum.
The simplex method was employed successfully on another problem
2 2 4 4 .
(x1 + 10x2) + 5(x3 -x4) + (xz —2x3) + 10(x1 -x4) = min,

with the initial simplex vertices at the five points

(3, -1, 0, 1)
(2; "'1! 0! 1)

2.2.5 Sequential Minimax Search
The various iterative approaches for solving systems of equations,

such as Newton-Raphson and Fletcher-Powell, require an initial estimate

sufficiently close to the root in question,

20




LMSC/HREC A783333

Relatively recently some interest has been displayed in obtaining
search procedures for locating approximately the maximum (or minimum)
of a function of one or more variables by computing the function at a minimum
number of points. Kiefer in Reference 5 develops an optimum sequential
search strategy for locating the maximum of a unimodal function of one
variable. This is a function f(x) defined in the unit interval for which
there exists a number X in the interval such that either

a. f(x) is strictly increasing for x < X and strictly decreasing

for x> X o or

b. f(x) is strictly increasing for x < X and strictly decreasing

for x> X
Unimodality is the only assumption. Assumptions with regard to continuity,
differentiability, etc., are not required. Let 'JN denote the class of all
strategies involving N successive observations (or evaluations) of the
function, and let D (f, S) denote the interval containing the maximum
point obtained as a result of N observations of the function f by means of
the strategy S. Also let L (D) denote the length of D, The problem is
to find a strategy SX C‘JN such that, for € > 0

N
* . p
su L[D(f, S ]s inf , sup L[D £, s)] . 10
i N 258 (10)
Let U be the nth Fibonacci number (i.e., U =U + U ) Thus
n n n-1 n-2
UO =0 U4 = 3
U1 = 1 U5 = 5
U2 = 1 U6 =
Uz = 2 U7 = 13
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and

[o. xz] if f(xl)zf(xz)

D(f, s’?_e ) =
[xl, l] if f(xl) <f(x2)

The strategy S; is defined inductively as follows: Suppose SI"fI_l has been
* UN-1
defined for N2 3. SN is obtained by choosing the points X, T g
N+l
8)
x, = l-x;, = N . Suppose f(x,)>f(x,). Then make the change of
2 1 U 1 2
N+l
variable
8]
N+l
Y = h(x) = U .
N
*1 *2
07 .\ Q\ 8) 1 x
i U \ \ N
' UN-I N\ Y 1
l \N+
| N+1 \\ UN-I N\
| U \
0 —N ol y
Y2
The point x = X, is mapped to the pbint y = 1, x = 0 is mapped into y = 0,
UN-1 |
and x = Xy is mapped to the point y = Y, g - Since the assumption
N

f(xl)z f(xz) it follows that the maximum point is in the interval [0, xZJ in
the x domain, or in [0, 1] in the y domain. Write f*(y) = f(x) and start

all over again in the y domain, this time allowing y, to play the role that
X, did previously. This may be accomplished by replacing N by N-1, and
then using the strategy S’;I_l on the function f (y). Note that the observation
f*(y2) = f(x]) has already been made and the next observation is made at

UN-
yi =1-vy2-= IJNZ. Thus, y; has the role of x; with N changed to N-1,
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Suppose instead that f(xl) < f(xz), which implies that the maximum point is
“Unop + XU

Un

N+l

in [x,, 17. In this case the change of variable y = h(x) =
1 g Y

is made. Note now that 3 is mapped into zero in the y domain, the point

UN-2
Un
125 Note that Y1 plays the role of X in the sense that N is replaced by

x = 1 is mapped into y = 1, and x, is mapped into Call this point

N-1 and it is now possible to use Si’:I .1 on the function f*(y) in the

S Y
0 Q- vy 1
U s I,U | *
N-1 / N I
Un+r” /7 Un+l :
7 / |
, ,
/ / '
/ / |
Vs yl / }
0 &= = 1 y
N-2
UN

unit y interval., Since S-xl\-I-l has been defined (induction hypothesis) the
description of the strategy Sl’)\(} is complete. Under this strategy the length
of the interval obtained after N observations containing the maximum point

satisfies

L[D(f,S;)]S€+U1 :
N+1
Kiefer in Reference 5 proves that the strategy S; just described fulfills the

condition (10).

The solution of systems of equations in several unknowns requires the
minimization of a function of several variables. D. J. Newman in Reference 6
attempts to generalize Kiefer's procedure to higher dimensions. Letting k
denote the number of variables (or dimensions), Newman seeks the maximum
value of the unimodal function in the unit cube in k-space, but restricts con-

sideration to the function as defined at the (k+1)™ lattice point (n arbitrary),
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The problem then is to determine a point, not necessarily a lattice point,
which dominates all of the values of the function on the lattice points. In
two variables (k = 2) an explicit procedure is given and it is shown that the

number of observations C(2, n) satisfies
C(2,n) £ 90 log (n+l).

The procedure is quite complicated, but if an additional restriction is made,
viz that the function by Cl-unirnodal, then a practical procedure exists such

that the number of observations required is
cl(2.n) < 10 log (n+1) + 6.

In general, for k dimensions it is stated that the number of function evaluations

C(k, n) required is

C(k,n) < Ck log n.
However, no formula for Ck is given in the article for k> 2,
2.2,6 Contour Plot

The contour plotting routine is an aid in locating the initial
estimates to the roots of a system, The number of contours desired along
with the grid limits are input by the user., A plane must be selected for all
systems greater than two. The technique employed here is a simplification

to that in Reference 10,

The technique divides the grid into n squares across and n squares
down. The number pairs (x, y), where each grid line crosses, are determined
and the value of the system at each intersection is computed., The largest
functional value is Fmax and the smallest is Fmin. The user's choice of

a scale factor, SF, decides the spacing of the contours between these limits.
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If equal increments in FC are required, then a scale factor of unity is input

and we compute

F_ = F_. +(i+1)AF
C. min

where

AF = (F

“max Fmin)/(N - 1)

A scale factor greater and less than unity will group the contours

closest together around a zero and pole respectively. In this case we use

F =F ; F =aF . +(F) " Y1arFr (=2,...,N)
Cl C . C. min

AF = (F -F )/(SF)N'1

max min

where N is the number of contour plots desired.

The routine numbers each grid line x and y intersection as follows:

5 7 67 69 71
2 |4 L S leslrol7e
73|75 ¢S 143
74|76 {4 J144
; =
: 1293 [1295

}
© o ¢ 0 0 006 00 s 0 0 129|4 1296
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Considering the first box, the McCue's routine (Reference 10) determines the

diagonal representing the vertices with the least difference:

If f(xlr Yl) - f(x4' Y4) < f(x3, Y3) = f(xz, Yz) then

3

but if f(xl, yl) - f(x4, y4) > f(x3, y3) - f(xz, YZ) then

This is done for each box,

Then the sides and diagonals are surveyed to determine the location
of the contour value F.. If F} >F. >F then a linear interpolation is per-
formed to determine the (x, y) values where F_ closes the side (1, 2) of box 1.
Then sides (2, 4) and the diagonal are tested. Finally, the other half of the box
is tested and so forth through all boxes of the grid frame, The interpolated

points are plotted, such as

By conhecting the points, a contour plot is obtained,

In the simplified version, a continuous line is not plotted; only points
along the contour are plotted., This eliminates the principal advantage gained
by including the interpolation on the diagonal, Interpolation on the diagonal
provides directional information for plotting a line contour, Therefore, the
diagonal is omitted from the routine included in the present program, Also,

the present program employs a grid of 35 squares down and 35 squares across,
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It should be pointed out that a tighter grid will result in points so closely
spaced that the result would appear as a continuous line. This might be a
better approach than including the diagonal and connecting points' with straight
line segments, For clarity, the printed grid does not have to be nearly as
tight as that employed in the computation, These comments are intended as

recommendations for additional minor program modifications,

An example of a contour plot obtained from the present routine, described
in Appendix C-1, is shown in Figures 4a through 4e, This example is the test
problem described in Section 2,4,1 for closely spaced roots with € = 0,005, The

point symbols correspond to F_ contour values as follows:

Fig. No.
4a 4b 4c 44 4e

Fmin .00319 .00319 .00319 .00319 .00319
Fmax 33.95 33.95 33.95 33.95 33.95
S.F. 1.0 1.4 1.6 1.8 4.0
N 8 10 10 10 10
i=1 (0] .0032 .0032 .0032 .0032 .0032

2 (o) 4.85 2.30 .79 .31 .0037

3 X 9.70 3.22 1.27 .56 .0053

4 O 14.55 4.51 2.03 1.00 .012

5 Y 19.40 6.32 3.24 1.80 .036

6 + 24.25 8.84 5.18 3.24 .14

7 % 29.10 12.37 8.29 5.82 .53

8 L 33.95 17.32 13.26 10.48 2,12

.9 v 24,25 21,22 18.86 8.49

10 (o) 33.95 33.95 33.95 33.95
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Figure 4a - Contour Plot Obtained from Computer Routine
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As may be observed in Figure 4, the printed grid does not correspond to the

grid used in the computation,
2.3 ANALOG AND HYBRID COMPUTATION SCHEMES

Certain aspects of the problem and the methods for seeking solutions
appear to be amenable with the features for which analog and hybrid com-
puters are attractive, Therefore, a brief study regarding such approaches

and the feasibility of a hybrid computation scheme was included,

2.3.1 Analog Solutions

Analog solutions to polynomial equations may be grouped into three
machine-oriented classes: (1) scanning techniques, in which the computer
sweeps the complex plane in a predetermined manner and locates the points
where the polynomial vanishes; (2) nulling techniques, in which the computer
solves the polynomial by finding a path leading to a root such that a suitable
defined error function is reduced to zero; and (3) tracking mode, in which the
computer indicates the variation of a root that was previously determined by
a nulling technique, if one or several coefficients of the polynomial are being
changed. Examples of these methods are found in Reference 11, Problems
are encountered in terms of computer elements and accuracy of solution in

expanding these methods to systems of algebraic equations.

Karplus and Soroka consider many standard techniques for solving
nonlinear algebraic equations on the analog computer a.lthough'several are
not solely for electronic analog computers (Reference 12), Potentiometric
machines for real coefficients and roots are evaluated as well as the inte-
grator solution suggested by Prof, C. P. Atkinson in which an nth degree
polynomial is converted into an nt? order ordinary differential equation and
then integrated to obtain the various roots, The method of harmonic synthesis
may be employed for solving high-degree algebraic equations with complex
roots. An electro-mechanical harmonic synthesizer, consisting of a poten-
tiometric equation solver with alternating voltages of adjustable phase pro-

vided to excite the system, is a possible analog technique. Electric field
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representation of analytic functions applied to solutions of algebraic equations
and electromagnetic field solution may be extremely successful in locating

roots,

A scan method (Reference 11) for solving for the real roots of a two
equation system is shown as a circuit diagram in Figure 5, Integrators are
used in place of multipliers in order to avoid amplifying the noise level in
the circuit, This method is suitable for finding approximations to all real

roots of a system,

The accuracy of the analog computer is limited by component imper -
fections. A single operation can usually be performed with errors in the
order of 0,01%, A typical large problem may be thought of as being accurate
to about 1%, although such estimates are difficult to derive, The resulting
error can be considered as a noise signal for purposes of estimating system

error,

Static errors are easily assessed and are fairly well known for standard
components. Dynamic errors are more difficult to assess; they arise because
the analog computer elements have non-ideal dynamic response, For example,
even if a summer had perfect static accuracy, errors would arise when the

inputs are changing rapidly for it behaves as a low-pass network,

Johnson (Reference 13) has mentioned problems of solution stability

using standard analog techniques for certain systems of equations, Gephart

(Reference 14) has developed a method of setup of algebraic equations that
ensures computer stability without algebraic manipulation of the system,
The main disadvantage, as is true with virtually all analog techniques, is
that the accuracy is determined by the complexity and size of the system of
equations, The advantage of analog techniques is that no initial estimate of

the root is required,
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2.3.2 Hybrid Technique

Fortunately, analog and digital computers are essentially complementary
in that the favorable features of one computer correspond to the undesirable
features of the other, The analog computer may be said to have inherent
speed due to parallel operation, Single operations of addition, for example,
are much faster on the digital than the analog, However, considering a series
of many operations, the analog quite often results in a lower cost in terms of
computing time, since the discrete actions of the digital require separate
execution of many different operations to perform the same job as the continuous

acting analog,

The accuracy and resolution of the digital is far superior to the analog.
The decision making capabilities, large available data storage and pre-tested
subroutines and software are among the outstanding features of the digital
computer, The floating-point arithmetic eliminates the scaling required by

the analog.

Among the outstanding features of the analog, we should include the
ability to perform simple, true integration., Unlike the discrete steps taken
by the digital, the analog integrates continuously with time as the independent

variable,

As has been noted in previous sections of this report, when in search
of roots for nonlinear simultaneous equations, our digital routines are plagued

with an absence of information concerning approximate locations of the roots,

As they stand alone, all digital techniques need initial estimates. Even
though they need no initial estimates for roots, our analog routines are
insufficient because of their inaccuracy, A combination of the two is in-
evitable - hence, we select a feasible hybrid computer scheme in which the
analog provides the initial estimates to the roots and the digital refines these
estimates through iterations to some desired accuracy, Truitt (Reference 15)

and King (Reference 16) point out many interesting arguments for hybrid
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computers, But, necessity has brought the hybrid for solutions to systems
of algebraic equations with the digital as a supervisor and refiner of the
analog. The hybrid computer to be considered is discussed by Truitt in
Reference 17. Figure 6 illustrates the logic flow of the proposed hybrid

computer scheme,

Figures 7, 8, and 9 compare the digital, analog and hybrid routines
with respect to percentage of solution uncertainty and required computer execu-
tion time., In all cases, we see that Fletcher-Powell seems to be superior to
Newton-Raphson, and as the complexity of the system increases, this superiority
becomes even greater, The hybrid routine consists of the analog integration

technique and the digital modular program,

Figure 7 shows that for a four equation system, Regula-Falsi has nearly
located the root before the necessary partials required by the other two digital
routines have been computed. The analog solution has a rough estimate to the
roots in a short time but is unable to refine the values, The hybrid, however,
selects the estimates as soon as they are available from the analog and passes

them on to the Regula-Falsi technique for a very fast accurate result.

In Figure 8 we see that an increase in the size of the system of equations
makes the computation of partials the advantageous mode of solution, The
analog accuracy is even worse now, since an increase in computing elements

has brought balancing problems as well as an introduction of noise,

Figure 9 illustrates still less accuracy in the analog and increased
computation time for computing the partials, The hybrid technique, once

again, is preferred,
Evaluation of a hybrid technique consisting of a modular digital program

and an integrator analog program reveals that favorable features of one

program correspond to the undesirable features of the other program,
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Specifically, the need for a search routine to locate estimates of the roots
for a digital program, such as those of Kiefer (Reference 5) and Newman
(Reference 6), are unnecessary on the hybrid computer. Similarly, the
inaccuracy of the analog is compensated for by the iterations of the
digital. Our conclusions are that accuracy of solution, reliability of
method for general purpose use, cost (direct result of computation time
required for acceptable accuracy), and the compatability of solutions with
the physical problem giving rise to the nonlinear algebraic system would
be realized in their maximum state when an analog-digital computer

system is used.

2.4 TEST RESULTS AND ENGINEERING APPLICATIONS

The following discussion is presented to demonstrate the computer
program, compare the different methods on the basis of some test results,
and exemplify the usefulness of such a program. The first subsection
considers several systems of simultaneous nonlinear equations, including
one system with closely spaced roots, while the second subsection is

devoted to an engineering problem of particular interest.
2.4.1 Test Results

Several systems of nonlinear algebraic equations were solved in an
effort to determine the reliability and accuracy of the solution techniques
under study. Following is a list of systems and results of solutions

where the prescribed accuracy is € = .00001.
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ot

.

[
i

x2 + x, -11 Known solution: X

) 3.5844283

1

2
2 x1+x2 -7

n
1}

X, -1.8481262 .

The Fletcher-Powell technique required four iterations in one second for

%2

The Newton-Raphson technique required three iterations in one second for

3.5844283

1.8481262

{xl = 3.5844284

x -1.8481265 ,

2

The search routine required 39 iterations in three seconds for

{xl = 3,5844284

X, =-1,8481265 .

.14285

1]

le +12 xz-l Known lsolution: {xl

o
*
"
laa) L
[\¥] bond
{] "

49x1+49x22+84x +2324 x,, -681 28571 .

1 *2

The Fletcher-Powell technique failed, After six iterations the routine

became trapped in the minimization process. After six iterations in one second

.1370932

.2857944

P
» »

(4" -—
]} 1

The Newton-Raphson technique required 37 iterations in two seconds for

.14291311

i
» »

[4%] —
" n

.28571195
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3. fl = x, +x, + Xy -1 Known solution: x| = 6
fZ = 3X1 +x2 -3x3 -5 xz = =7
f3 = x1 -sz -5X3-10 x3 = 2 .

The Fletcher-Powell technique required five iterations in two seconds for

X, = 6
X, = = 7
X3 = 2 .

X, = 6
X, = -7
x, = & .
4. {fl = 121x21 -3Zx22-121 Known solution: {xl = 1.2857
, 2 2 )
f2 = 7x1+7x1 x2+7x2+ '70x1 -63x2 -34 x, = 1.5710

The Fletcher-Powell technique required fourteen iterations in one second for

"

{xl‘ = 1.2857981

X, 1.5685939 .

The Newton-Raphson technique required sixteen iterations in two seconds for

{xl = 1,2857746

X, = 1.5816151 .
5 f. = x3 -3 x2 x.+ x2 -7 Known solution: {(x, = 1.91475
° 1 1 172 2 * 1 *
2 2
f2 = x1-4x1+x2-4xz+4 x, = .001817 .
44
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The Fletcher-Powell technique required six iterations in two seconds for
{x = 1.9147505

X, = .0018179036

The Newton-Raphson technique required five iterations in two seconds for

X = 1.9147503
x, = ,0018176978

2
6 f, = xZ +x2 +x2 -1 Known solution: [x, = .785202
. 1 17%27%3 !
f, = 2x21 +x, -43 X, = .496611
£, = 335 -4x,+35 x5 = 4369922

The Fletcher-Powell technique required seven iterations in three seconds for

x, = .78519690
X, = .49661120
Xy = .36992267

The Newton-Raphson technique required five iterations in two seconds for

x, = .78519695

X, = ,49661139
X3 = .36992283
7. f1 = X + 10x2 Known solution: x| = 0
£, = \/’5'(x3-x4) x, = 0
2 -
\Vio 2 _
f4 = lO(xl-x4) x4—0
45
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The Fletcher-Powell technique, after fifty iterations in five seconds, obtained

x, = -.49446885 x107°
x, = 48518575 x107>
xy = =25345917 x107°
x, = -25341771 x1072

The Newton-Raphson technique converged in 28 iterations in two seconds for

x, = 14646 x107°
X, = -. 14646 xlO"4
x, = .38937 x107*
x, = .38937x107%

The search routine after 141 iterations requiring nine seconds obtained

x1 = 0

x, = .1415963 xlo'5
x, = .8961344 x10~8
x, = +1096351 x10~14

8. f, = 2x -3. 18309886 log((1 -x3)/(1+x3)] -1

2. 2.,,.2 2 2 2
1.57079632 x (1 -x5x3) { (x5 -x5)/ [y x5 (1 #x3)]} -5

[N
f

X3 -.14271816

Known solution: X, = 0.042591338

0.041400152

H

0.14271816
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The Fletchei-Powell technique required 18 iterations in seven seconds for

x, = 0.042591337
X, = 0.041400143
X5 = 0.14271816

The Newton-Raphson technique required 41 iterations in twenty-two seconds for

X, = 0.042513292
Xy = 0.041403138
Xg = 0.14271816

The search routine of Nelder and Mead is not used in most of the above

systems because of the difficulty in deriving simplex points. Since there

seemed to be difficulty in solving System 7, described above, the search

routine was employed to help locate an initial estimate for one of the other

More time and many more iterations were required

of the other techniques; however, a

iterative techniques.

for the search routine than for any

close -to-zero solution was obtained, which is the true solution. Therefore,

because of the difficulty in obtaining simplex points and because of the length

of computations, the search routine seems the best technique to be used

when questions arise concerning the validity of the solution obtained by other

techniqures.

System 2 failed under the Fletcher-Powell technique but was successful

when the Newton-Raphson technique was used. Failure of the Fletcher-

Powell technique can be attributed to problems in determining the interval

length along the line leading to the minimum. Davidon, in Reference 18,

discusses this problem and hisideas helped to eliminate the failures

of the Fletcher-Powell technique in all but one of the test cases.
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Newton-Raphson has been extremely reliable in all but one (System 7)
test case. The accuracy of the Newton-Raphson technique, however, has
not been as good as that of Fletcher-Powell. Study of larger and more com-
plicated systems (as shown by System 8) indicate the Fletcher-Powell technique

to be more reliable than the Newton-Raphson when the system increases.

Study of System with Closely Spaced Roots

The following system of two equations in two unknowns was adopted for

the purpose of analyzing a system with closely spaced roots:

ey 1 =0

Fh
1]

£, x°-y-1-€ = 0.

Jif2er  -l4r
2 ' T2

2 '’ 2

(‘m -1+r)

[[r2er -l-r)
- 2 2

([1+2e_-r -l-r)
;)

Figurel0- Graphs of Two Equation Systems
with Closely Spaced Roots
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There are four distinctreal roots to this system (i.e., four intersections

of the circle with the parabola as shown in Figure 10) provided 0 < € < 1/4,
—_— =7

The spacing between the two roots at the bottom of the figure is \/E Vi +2€-r
where r = V1 - 4€, This spacing is approximately 2V 2€ for small € and

vanishes for € = 0.

The Fletcher-Powell method for solving this system determines the

minimum points of the function fl2 + fzz, these minima being zero at the roots

of the system. A contour map of fl2 + fzz is shown in Figure 11 for the case
when €= 0 (i.e., when the two bottom roots in Figure 10 coincide), Only the
contours for positive x are shown, the figure being symmetrical about the y
axis. Such a figure is useful for exhibiting the approximéte location of the
roots and the important topographic features of the function. For example,
a saddle point is seen to exist at the point (.8, -.5)(and likewise at (-.8, -.5)
by symmetry). At this point the function decreases if one proceeds in either
direction along the dashed line shown, with the equation x2 = -1/2(y+2)(y-2),
whereas the function increases if one proceeds from this point in a direction
perpendicular to the dashed line. In any descent method one starts close to
the desired root such that saddle points, etc., are avoided in the descent.

A contour map of flz + fZZ for the case of a small finite value of € is not
available yet. Nevertheless, the Fletcher-Powell method was employed,

the starting point being

0.5
2.0

X
o

(o]

After eleven iterations the value of the function was reduced to approximately

2 x 10-14, corresponding to

x = .10012652

y = -099497470
The method evidently sought out the lower right hand root of Figure 10, the
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x% = L{y+1)(y-2)

\

\
\
\

Saddle Point
/

| 1 |

Figure 11 - Contour Plots for the Two-Equation System
with €=0 (Two Coincident Roots)
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correct value of this root (for € = .005) being

+.10012619
-.99497475

y

The Newton-Raphson, applied directly to this system and using the

same starting point gave, in eight iterations:

.10012613
-.99497475

The various iterative techniques will generally fail to distinguish
between closely spaced roots unless the starting point is suitably chosen.
To aid in the intelligent use of any scheme, a good knowledge of the topog-
raphy of the function to be minimized is invaluable, To this end, the contour

plotting routine, based upon the method of McCue, is quite useful,
2.4.2 Engineering Applications

The engineering problems in which systems of nonlinear algebraic
equations arise are numerous and hence it is impossible to consider all of
them, Of particular interest to the NASA/MSFC technical director of this
study contract are (1) computer programs for synthesizing networks with
resistive loads (Reference 19) and (2) solutions of systems of nonlinear
algebraic equations that arise when some technique, such as the Ritz
Averaging Method, is applied to nonlinear differential equations (Reference 1),
The latter problem was considered as a basis for defining the major require-

ments for a computer technique.

R. S. Ryan, in an Aero-Astrodynamic Technical Note (Reference 2),
describes the Ritz Method for a highly nonlinear air spring problem for
both the single-degree-of-freedom and the two-degree-of-freedom situation.

The former leads to a pair of simultaneous nonlinear algebraic equations in
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two unknowns for the required response; the latter leads to a system of six

equations in six unknowns., A detailed review of this problem follows:

Single-Degree-of-Freedom System

The application of the Ritz Averaging Method to solve nonlinear vibra-
tion problems is treated in References 1 and 2, The general second order

differential equation for a single-degree-of-freedom system is
aq +bg(q) + cf(q) = P cosQt

where q is the dependent variable (e.g., a displacement) g(q), in the damping
term, has the dimension of q, and f{q), in the restoring force term, has the
dimension of q. P is the amplitude of the applied force, Klotter, in

Reference 1, writes this in the form
e L] 2
E=q +2DKg(q)+ K'f(q) -~ pcosT =0

where

2

2DK == ; K =-§-;p= T =82t

o

¢

a

and assumes a periodic solution of the form
H = Qcos(T-€)

where Q and € are constants to be determined, It is shown that the Ritz

Averaging Method furnishes the two conditions

e cosT

/ E(E)} dr = 0
sinT

(o]

These conditions, when the integration is performed, lead to two nonlinear
equations for the unknown quantities Q and €. He then treats the undamped

case (g = 0) for the following three restoring forces
(a) f(q) = q
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+—-——R—-
Y

€ = 0, T respectively,

leading to the known solution Q

(b) f(q) = q + p.zq3, p,2>0, the Duffing equation for a "hardening"
spring,

In this case the Ritz conditions lead to

2
L c1+ 2% Y
K KQ

€E=0,m respectively
23 . . . .
(c) f(q) = q - u q°, Duffings equation for a "'softening" spring.
Here the result is

@ 3 2 2-—

= = 1 - T H Q + '—éL

K KQ

Curves for these results are given in Figures 1 and 2 of Reference 1. The

Duffing equations are also treated for linear damping, g(q) = q .

In Reference 2, R, Ryan treats the single-degree-of-freedom

differential equation without damping. In the notation of this reference
DM = 1+ @ [(l-fl)-.-l] + Q% sinQt =0
o o
where

7 = normalized displacement

C
Y= ER ratio of specific heat at
v

constant pressure to that at constant volume, a constant greater than unity,

2, ¢

frequency, normalized amplitude of applied sinusoidal force,

>
n

undamped natural frequency of linearized system.
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An assumed solution of the form 7= M + Qsin T is taken, (the additive
constant appears since the restoring force is no longer symmetrical),

so that the Ritz method furnishes

27
D(g)dT =0

27

f D(n) sinT dT=0

(o)

giving the following two equations for M and Q:

mw
dr = 27
)] (1-M-qQ sinT)”
(12)
2
i dr 2
f sinT > = 7T Y(Q -fo)
A (1 -M - Q sinT)
2 _QZ 2 2
where =S, 0 =0, Y. Solutions (M, Q) to these equations for
w

y=10, 1.1, 1,5, 2.0 as obtained by analytical means and various com-
puter techniques are derived and the results are plotted as a function of r,
in Figures 12 and 13, Only the M curve is given, the Q curve being very

similar,

These solutions for (12) have been obtained as follows:

a. ?=1.0

Consider Equations (12) for ? = 1,0, The two integrals appearing
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1.1 1.0
1.5
=2.0 Backbone Curves
Yy =1.0, 1.1, 1.5, 2.0
M Only
.2 .4 .8 1.0 1.2

Figure 13- Backbone Curves
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therein are readily evaluated,

27
f dT _ 2m
-M- inT 2 2 2
) 1-M-Q sin [(I-M) -0 ‘-}1/
2m 27
sinT dT __1 1-M-Q sinT - (1-M) ar
1-M-QsinT T Q 1-M-Q sinT
o o
_.2em 1 - — 1-M
Q [(I-M)Z _ QZ] 1/2

and Equations (12) reduce to the two algebraic equations

(1-M)% - @°

1
(13)
rZQ('fo -Q)-2M =0

The solution to Equation (13) for {, = 0 is readily obtained:

1 2 2
M=2 (1-—2-) ,Q=ir7 l-r

r

These results give the backbone curve, The plot M vs r is shown in
Figures 12 and 13. For non-vanishing values of E , one may eliminate Q,
for example, from Equation (13) and obtain the response in the form

r vs M as

1/2
2M

r = (14)

+ yMi-am T- Mm% - 2m)
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Note that

Q=+ MZ-ZM

Equation (14) is plotted for Zo = .2 in Figure 12, The curve to the left of the

backbone curve corresponds to Q<0. The curve to the right of the backbone

curve corresponds to Q> 0,

The Newton-Raphson program was applied to Equation (13) with Eo

0
e

.04, .1, .2 to determine M and Q for different values of r. Very precise
results were obtained, and the roots for é‘o = ,2 were found to agree with

response curves of Figure 12,

b. Y=1.1

Letting ¢ = ITQI\'/-I , the Equations (12) may be written in the form

m 1
1-M = _2_17_7 dT ' 7
2 (1-c sin'r')y

2T (15)
f sinT d7T =
1-M = 2 0 (1-c sinT)/ +2°
2 27m o]
r Yc f dr
: (l1-c sinT)/

These two expressions for 1-M were calculated for ¥ = 1,1 using a Runge-
Kutta-Gill routine, with c¢ as the independent variable and r as a parameter,
and Z"o = 0, The two functions were plotted, and the intersections wére
accurately determined, leading to precise numbers for M and Q ve r,

The backbone curve for M is plotted in Figure 13,
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A simple argument for small values of M, Q in Equation (15) shows
that the backbone curve touches the r axis at the point r = 1, for all values

of ¥.

c) Y =1.5

2 -2Q

In Equation (12) let y = %, and put k=~ = TM-O° Q< 0. Then

the two equations become

4> E(k)
(-20)7/?

8k K (k 2 2 >
———5—}—+2”(1-——)+7T Y (§ -Q)
(-2Q)3 2 kZ r o

= 27
(1-k%)

(16)

0

where E and K are the complete elliptic integrals

I
2 ’
E =f l-kz sinzxdx
o
I
2

From Equation (16) and the definition of k2 , and using ¥ = %

2/3

2/3 .2
0= -3 (3)7 R

) (17)
M = 1+Q (—2‘ -1)
k

K2 E(k) (1-Z5 ) + 2K(Kk) (1-k%)
k

(Z,-Q) k% E(x)
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For various values of k, a computer program determined Q, M, r2 from

Equation (17) and plotted M and Q versus r. The M curve is shown in

Figure 13. Again Co = 0.

d) Y. =2

When Y = 2, the two jntegrals appearing in Equations (12) are evalu-

ated as

27T (1-M) ’ 27 Q
[(I-M)Z ; QZ] 2 [(1-1\/1)Z ; Qz] e

respectively, so that Equations (12)1lead to the pair of algebraic equations

[(1-M)2 - 02]3/2 = 1-M
(18)

2 -+ o =0
These equations are readily solved when 2"0 = 0, yielding

1
M=1-=
T
(19)

Q=+ [1 -r4/3]1/2

T

The M response curve is plotted in Figure 13, Observe from Equation (19)
that M = 0 when r = 1, confirming what was stated earlier about the inter-
cept at r = 1. Also, values of r> 1 are not allowed, for otherwise Q is

imaginary.
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Inasmuch as the integrals in (12) cannot, in general, be expressed in
closed form, the approach adopted in Reference 2 is to employ a polynomial
approximation to the restoring force. Specifically a fifth degree polynomial

5 .
PS(T]) = Z ainl, with a; = 1, approximating (1-17)-?-1 in a least square
1

sense in the interval -2 < 5 < .7 is employed. Plots of the restoring force
and the corresponding polynomial fit, as developed at HREC are presented

in Figures 14, 15, 16, and 17 for ¥ = 1,1, 1,2, 1.3, 1.4, The numerical values
of the coefficients a, are also shown. The polynomial fit permits the

(1-M-Q sinT )-)' factor in (12)to be written as a polynomial in M and Q.

The integrals in(12)may then be evaluated as polynomials in M and Q,

and the Equations (12) reduce to the following pair of algebraic equations:

8 P_(M) + 4 P, (M) Q%+ 3P (M) - o

- (20)
rz'y (CO-Q) + P4(M) Q+ -i’-— PZ(M) Q2 + —g— ag Q5 =0

where 5
i
P M) = ) a M
1
P,(M) = a,+2a,M+3a M° +4a, M +5a,.M* = B (M)
4 - 17 %% 3 4 sM =Py
P (M) = a,+3a,M+6a M2+10a M3 —__1__ P ”(M)
3 A 4 5 =77z s
P (M) = a,+4a, M+ 10a M2 = 1 P_""(M)
2 37774 5 % Fs
= -1 p IV
P, (M) = a +5a;M = 55 Ps V(M)

Equations (20) are written out in full in Reference 2, To make this report

as complete as possible, they are repeated here as follows:
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Figure 14 - Restoring Force (l-n)_y—l and Polynomial Fit, for y = 1.1
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Figure 17 - Restoring Force (1-77)-7-1 and Polynomial Fit, for y = 1.4
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System of two equations in two unknowns:

8(a1M+a M2+a M3+a4M4 +a5M5)+4(a2+ 3a 2

2 3 M+6a4M

3,2
3 +10a,M7)Q

4
+ 3(a4 + 5a5M)Q =0

-rz(-fo + Q)7+ (al + ZaZM + 3a3M2 + 4a4M3 + 5a5M4)Q + %(aa' + 4a4M

2,3 .5 5
+10a,M9)Q” +ga.,Q” = 0

These algebraic equations were solved by the method of steepést descent by

R. Ryan, and the response curves,showing M and Q versus r, are to be
found in Reference 2, His result for M versus r for ¥ = 1.1 is given in
Figure 18. Within the aforementioned limitations on the polynomial fit,

these results compare favorably with those obtained analytically from Equation

(12) as explained in the previous paragraph,

Two-Degree-of-Freedom System

A fwo-degree-of—freedom system, involving the same nonlinear
restoring force, is discussed in Reference 2. The following pair of

differential equations, in the dependent variables Z,,Z, is obtained,

- - il -y i2 [\ ., -7
D= A Z, +ALZ, + [(1-21) -1] +— [(1 Z,) 1]

(21)
2— o _ .
+ 2 ;o [Bi sin?7 +Ei cos‘r] =0, i=1,2
where the coefficients are defined in Reference 2, Assuming a solution of

the form

zZ, = Mi + Qi cosT + Ri sinT , i=1,2 (22)
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where Mi’ Qi Ri are to be determined, the Ritz method requires that the

six relationships

w 1 i
cosT
f D,(Z,) ar =0, i=1,2 (23)

sinT
o

must hold,

Substituting Equation (22) into (21) and carrying out the integration in

Equation (23), the result is:

2m 2m
K K
11 12 2m —
7 fl dTr + —-;—- fz dr = y (Kll + KIZ)
o 0
21 27T
K K
21 22 . 2T == =
o o
27 27

A, Q%07 - A .QZQH+E—1 £ cosrar + 22 [ ¢ cosrar = 0
11 1 12 2 y 1¢°°% y 2 €0° =

o) Lo}

_ 2 — 2
-A .QZQ -‘A .QZ + If——z-—l f. cosTdT + -I-(——Z-g f . cosTdT = 0
21% Q7 T Axpte Qo7 7 1 vy 2 =
[}
- ar — 27 .
A QPR.m - A .QZRn+-I-<-L1 fsin‘rd‘r+E-1-§ f. sinTdT = 0
11 17 12 2 y 1 y 2 8in =
o o
68
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21 177 y Sln -—7—
Using the abbreviations
27
J, = f f.ar
o]
27
Ci = f fi cosT dT
o
27
Si = / fi sinT dr
o
where
= (1-M.-Q. cosT - R, sinT )7
1 1 1
the six-equation system may be written
KipJp + Kppdp = 27 (K +Kyp)
KZIJI + KZZJZ = 2 (K21 + KZZ)
K K
11 12 2
-@n (A11Q) +A,Q) +—— € +‘_7 Cp = - By
K
21 22 2=
Q% (A 2191 ¥+ 8220+ 5 C) +—5=C, = - E,m
K R
2 11 12 2—
K X
21 22 2—
-@n (A Ry + Azsz) T S5] t5 S, = ez By
69

f,sinT dT

0

(24)

(25a)

(25b)

(25c¢)

(254d)

(25€e)

(25£)
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The first two of these equations imply immediately

When 7= 1.0, the integrals (24) may be evaluated as

-1/2
2 2 _2

3, =2m [(I-Mi) - - R, ]

2mQ; | 2
C. = g [-1+(1-M.) (1-M.)% -
i R.Z +Q.2 i i

1 1

R,
S]..=-6-Ci

(see, for example, Reference 20, Table 69, No. 17).
Hence, for ¥ = 1,0, Equation (20) implies

(1-Mi)2-Qi -RS=1, i=1,2

(26)
-1/2
2
-rZL ] @
(28)

Consider the case Z-o = 0 (This gives the "backbone' curve), with Y= 1.0.

In this case it is possible to reduce the system (25) to a system of three

equations in three unknowns, Eliminating C2 from the third and fourth

equations,

o%n _
[(KIZ o1 " Kpph )9 + (R 545, KzzAlz)Qz]

1] = —
t5 (K Kop - KoKy

and S2 from the fifth and sixth,

70
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2. - - ' — -
Q7 (K A, - Kyl Ry + (K ,A,, - K22A12)R2}

Ki1Kp2 = Kp K505, =0 (30)

—

1
ty

S R
and then multiplying (29) by -c—;l- = 5_1 and subtracting (30), it is
1 1

observed that

- - 31
QR, -R;Q, =0 (31)

In view of (27), (31), it follows that

2mQ R

_ 1 2 2,1/2 _
C,=—>—> [-1+(1+R1 +0Q,%) ] . 8 =5 C, (32)

R +Q; 1

2

2mQ R R, 2 5 1/2 R,
C, = ——ts [-1+{1+——2 (R1+Ql)} ] 5,=5 C,

(R,"+Q,")R, R, 1

Rewrite (30), (25e) and (25f),

2 = - — = o = = =
L [(K12A21 T KB )Ryt (Kyphg, - K22A12)R2] ty (B11Kpp m KoK ) =0
%7 (A R.+A R)--I_{—I-IS -:lgs =0 (33)
1171+ A RN 57 5, - 575, =
K K
2 21 22
Q°rm (A, R; + A, LR,) - > S;-—55,=0

With the above equations for Si' the three equations (33) are a system
of three equations for the unknowns Rl' R,, Ql' After solving these, Q,
is found from (31) and M,. M, from (28). Thus a precise solution to the

problem for the case ¥ = 1,0 is available,
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For general values of 7, the integrals S;, C; appearing in the system
(25) cannot be written in closed form, If the polynomial fit to the restoring
force Ps(n)z(l - )'7

and the system (25) reduces to six algebraic equations for M;, Q;, R;. These

- 1 1is invoked, these integrals are readily evaluated,

equations are written out in full in Reference 2 as Equations (84-89), however,

to make this report as complete as possible, they are repeated here as follows:

System of six equations in six unknowns:

2
— 2 3 4 5 2
E Kl.1 [2Mi+2Mi a2+2Mi a3+2Mi a4+2Mi ::15+aZQi
i=1
2 2 3 3 4 2 2
+a2R + 3a MQ +3a3MR +Z-a4Q Z— 4 i +6a.4Mi Qi
2.2 . 6 2 15 15 4
+6aMR +Za4Q R +—4-aMQ +—a5MR +10a5MQ
3.2 30 2
+10a5MiRi +—4-aMQ R ] =0
2
2 3 4 5 2 2
E RZi [2M1+2a2Mi + 2;131\/1i + 2.—;141\/1i + ZaSMi +2,Q" + a,R;

2 2,3 4 3 4 2.2
+ 3a3MiQi + 3a3MiRi + Za4Qi + -‘-1—:=14Ri + 6a4Mi Qi

2.2 6 2.2 15 15 4
+6a4MiRi +Za4QiRi +Ta MQ +—zl- a5MR +10a5M Q
+ 10a5M3R2+3—40a M.Q RZJ =0
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2 2
2 _ - - 3 3
R [— E AliQi + Co(b +acosa) + E Kli [Qi + ZaZMiQi +7 a30i

i=1 i=1
3 2
+3a3MQ+ 3QR +3aMQ +4a4MQ+3aMQR
15 30 2.3 4 30 4

* 31 sQ T AsM Q)+ 5gMiQ + a M QR *7,' 5Q4R;

, 10
+1ga.Q R/ ] 0.
2 2
- = 33
[' Z A2iR ¥ {1 - cosa) 4 Z Kai [Qi t2aMQ; + 7250
i=1 i=1

2 3 2 3 3 2
+ 3a3Mi Qi + vy a3QiRi + 3a4M.1Qi + 4a4Mi Qi + 3a4MiQiRi

.15 30 2 2 4 30 4
37 5Q P asM QR Ml + Tra M, QR +Ta Q;R;

10 3,2
+EaSQiRi ]- 0.

2 —_—— . - 3 3
2 [— E AiiRi + a g'o sin OIJ + E Kli I:Ri + ZaZMiRi + Za3Ri
1

2 3 2 3 3 2
+ 3a.3Mi Ri + 7 ::L3Qi Ri + 3a4MiRi + 4a4Mi Ri + 3a4MQ1 Ri

15 5 30 2_3 4 30 3
24aSR + = = aSMiRi +5a5MiRi+-4—a M Q R +_?>' 5Q R

5 4
+—lz-a5Qi Ri] = 0,
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2
Q° - A.R.-, sin¢v | + K R. + 2a,M.R +34 rR3
Z 2i""i %o 2i i 27T T E 93T

2
+ 3;3.3M:.l

3 2 3 3 2
Ri + Y a3Qi Ri + 3a4MiRi + 4a4Mi Ri + 3aL4:MiQi R.1

3

i

15 5, 30 2,3 4 30 2.2 10 2

All ofthe known methods for solving systems of nonlinear equations
require prior knowledge of the approximate location of the roots of interest.
In the two equation system discussed earlier, such knowledge is available
from the known analytical solution for ¥= 1.0 discussed at that point and
presented in Reference 21, The solutions for ¥ = 1.0 form a good starting

point for obtaining solutions for ¥= 1.1, for example.
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Section 3
RECOMMENDATIONS AND CONCLUSIONS

This report is as complete and self-contained as possible, It includes
all of the significant content previously documented in the bi-monthly progress
reports, References 21 through 27, as well as the final result, This final
result is a composite computer program for solving an arbitrary system of
simultaneous algebraic and transcendential equations. The term composite
is employed to account for the fact that the program is a combination of
techniques, These techniques are called the Newton-Raphson, Fletcher-
Powell, Simplex and Contour Mapping. Such a program provides a spectrum
of different approaches for seeking a solution and hence the capability for

solving widely diverse classes of equations,

In applying this program to particular problems, it may quite often be
useful to use one technique as an aid to another, For example, the simplex
method could be used in some cases to determine a sufficiently close esti-
mate of the root for either the Newton-Raphson or Fletcher-Powell method,
The contour mapping routine may be used to obtain useful information re-
garding approximate location of the roots, division between closely spaced
roots, number of roots, ridges, valleys and saddle points. Such knowledge
is often required in order to avoid convergence problems in applying any of

the other three techniques,

In addition to solving systems of nonlinear equations, another useful
application of this program is in minimization (maximization) problems.
The Fletcher-Powell, Simplex Method, and Contour Mapping methods are

basically minimization techniques.

The principal conclusions of this study, regarding convergence problems,

separating and identifying roots are:
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1. The selection of a particular method for a particular system

of equations is frequently essential,

2. An initial guess for the solution is always essential, and quite

often it must be sufficiently close,

It is therefore recommended that future study be directed largely toward
techniques for obtaining useful information which would provide a firm basis
for selecting a particular method and an initial guess, This information
should include the number of roots, approximate location of roots, division
between closely spaced roots, and certain features of the function's contour,
These methods could be developed as companion routines to the present

computer program developed under this contract,

Possible approaches to the problem include: (1) automatic contour
mappings, (2) extension of Cauchy's Integral Theorem, and (3) application
of the Sturmian Sequence Rule, The first approach has been included in the
present program, however, only a rudimentary technique was used. The
decision regarding the necessity of such complimentary information was not
made until late in the study and of course this was not the principal objective
of the present contract. Therefore, further development of the contour
mapping approach should yield some valuable results, The second and
third approaches are discussed briefly by Hochstrasser. (See Item 17 of
the Bibliography, Appendix A,) In developing techniques for applying any
of these approaches to higher order systems of equations, the principal

considerations should be computer requirements and tractability.

Hybrid computation schemes also appear to be an area in which future
study would yield some significant improvements. The attractive features
offered by modern analog and hybrid facilities, such as patchable digital
logic and on-line displays, are particularly amenable to the gradient and
search methods. In fact, these same features would be quite useful in
obtaining the preliminary knowledge about a particular system of equations

that is frequently essential,
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In considering the extent to which the composite computer program en-
compasses the complete spectrum of basically different methods, there is
only one method that has been excluded, This is a random search method,
Such procedures were not included bacause they are more amenable to high-
speed, repetitive analog facilities than the digital facility for which the
present program was developed, Such a method would normally be preferred
only if all other methods fail, It is of particular value when the gradient
cannot be determined, however, in this case, the simplex search should be

a satisfactory alternative,
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APPENDIX B-1
COMPOSITE PROGRAM USER'S MANUAL

There are two types of input to the composite computer program for
solving systems of nonlinear algebraic equations, The first type of input
consists of the system of equations to be solved, while the second type is
made up of pertinent option selectors and required initial information con-

cerning the system to be solved by the Nonlinear Equations Program (NEP).

SYSTEM INPUT

The system of equations to be solved is input directly into the program
deck in the subroutine entitled, EVAL, (See Figure l.) The user must punch
the system on 80 column punch cards in the Fortran IV compiler language
using Columns 7 - 72 and place the cards in their proper location in the
Subroutine EVAL, If the equation should require more columns, a number
(1 - 9) is placed in Column 6 and the previous card continued. All variables
such as x, y, z, ..., must be re-named X(l) for x, X(2) for y, X(3) for z,
..., and all functions suchas f, g, h, ..., must be re-named F(1) for 1,

F(2) for g, F(3)for h, .... As anexample, consider the system

flx,y,2) =x+y+ 2z -1

g(x, vy, z) 3x + y - 32 -5

hix, v, z) X - 2y - 5z - 10

which would be written for inclusion in the Subroutine EVAL as

F(1) = X(1) + X(2) + X(3) - 1.
F(2) = 3. % X(1) - X(2) - 3. * X(3) - 5.
F{3) = X{1) - 2. % X(2) - 5. % X(3) - 10.

Bl-1
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The maximum number of equations allowable is 20, Although the gradient must
Le defined analytically when using Feltcher-Powell or Newton-Raphson, the
user need not derive the equations since the program computes numerical
partials using the functions as input, (See the sample run for an example of

proper system inclusion,)
OPTION AND DATA INPUT

The MAVRIK input package is utilized for data input from punch cards,
All desired input parameters are placed on 80-column punch cards beginning
in Column 2 and extending through Column 72 with additional cards added as
needed to complete data input requirements., A slash mark (/) indicates the

end of input data,

All input parameters have been given names or symbols and are assigned

numerical values by equating the symbols to the values desired; e.g., METHOD = 3,

POINTS = 21,, 3.4, 5., creates input data for METHOD equal to 3, and the first
three variables of array entitled POINTS equal to 21., 3.4, and 5. (POINTS (1,1)
= 21.,, POINTS (2,1) = 3.4, POINTS (3,1) = 5.) All arrays are assigned values by
columns, hence the innermost subscript varies first of the doubly subscripted
variables, To skip to later variables in the array, one can write POINTS + 2

= 20., 13., which assigns values to POINTS (3,1) and POINTS (4,1). To skip to
variables in the second column of the array, one must add the number of rows

in the first column in order to get to the second column, For example, POINTS
is dimensioned (21, 20) so the first element of the second column (POINTS (1,2))
is POINTS + 21 and POINTS (2,2) is POINTS + 22,

Input data is in the floating point format and input options are in the fixed
or integer format, A decimal point must be included in all floating point fields,
A comma must follow each numerical value regardless of format, Blanks may
be placed throughout the input data for ease in reading as long as symbols and
numerical fields do not contain blanks among their elements; e.g., 805 not 80 5,
XL not X L. However, XL = 805., POINTS = 25,, 31., 65., 21,, 23,, are
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acceptable, Note that 28.3 , and 5 , are treated as 28.30 and 50, respectively,

If an integer 5 were desired, the comma must follow the 5 with no blanks (5,).

Input Options

There are four input options the user may select., Three methods of

solution and one contour plotting technique are available,

Option Selector

Method Technique Selector (Integer Variable)
1 means use the Fletcher-Powell technique
2 means use the Newton-Raphson technique
3 means use the search routine
4 means construct contour plots

Input Data

The selection of certain methods require specific additional information,
The letters following the input data symbols indicate which options require the
data in question: (F) Fletcher-Powell, (N) Newton-Raphson, (S) search routine
and (C) contour plots,

UKNOWN (F, N, s, C) N where N is the number of unknowns

the system has (an integer variable),

ORDER (F) = K where K is the order of the system
(an integer variable),

XINITL (F, N) XN where Xpy is the array of initial
estimates for all unknowns (floating

point variables dimensioned (20)).

DEL (F, N) = AX where AX is the increment to be
used in computing partial derivatives
of the system with respect to each
unknown (floating point variable),

Set to ,001 if not input,

B1-3



EPS (F, N, S)

POINTS (S)

ALPHA (S)

BETA (S)

GAMMA (S)

ITEST (F, N, S)

XL (C)

XR (C)

YT (C)

YB (C)

N (C)

SF (C)

]

SAMPLE COMPUTER RUN

F(X, Y, Z)

G(X, Y, Z2)

H(X, Y, Z)

LMSC/HREC A783333

€ where € is the accuracy criterion
for termination of iterative techniques
(floating point variable), Set to .00001
if not input.

Pij where_Pi' are simplex points and
i-1=7jis t']he size of the system
(floating point variables dimensioned
(21, 20)).

a where @ is a reflection coefficient
(floating point variable),

B where B is a contraction coefficient
(floating point variable),

Y where ? is an expansion coefficient
(floating point variable),

J where J is the maximum number of
iterations to be allowed in solving for
roots (integer variable), Set to 50 if
not input,

Xp where x, is the left most x value
for grid construction (floating point),

x,. where x, is the right most x
value for grid construction (floating
point),

y¢ where y¢ is the top most y value
for grid construction (floating point),

Y, where yy is the bottom most y
value for grid construction (floating
point),

n where n is the number of contour
plots desired (integer variable),

scale factor when unequal increments
for the contour values are desired,
(floating point)
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Program Listing B-1 shows the necessary conversion of the above system
to Fortran IV and propoer inclusion into the Subroutine EVAL, Program Listing

B-2 illustrates the input data cards for solving the system,

Program Listing B-3 shows the intermediate output as a result of

rising the Newton-Raphson solution technique.

Program Listing B-4 shows the solution to the system,

B1l-5
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PROGRAM LISTING B-1

LMSCUS .
Césn - tFN SPURCE STATENMENT =  IFN(S) -
SURE. T INF HVAL(X,FXZ,GXZ,FAR)_ v
COMMUN JINITZ IS,IN,CEL, EFS , MFETHOD,ITFR
CIMINSTZN X(20),F(2C),GX2(2C) +PAR(ZC,2C),0%(2C)
CIMENSION F1(20), CF1(20)
- . AP (METHSC <EQe 4) 6032 10
ICPUNT=1
[FLAG=C
Ge 18 1vu
© CONTINUE R -
X(ICPUNT)=X(ICOQUNT)+CEL
_1C CeNTINLE
C WRITE [N SYSTEN BEGINNING IN COLUMN 7" WITH VARTABLES AS X(1) SUCH AS
C FOL)=X(1)wu2+4¥(2)-11a
F2)=X(Z2)nu2¢>(]1)=7.
FOR THE SYSTEMN
Xu#,4Y=-11.=0Q.
YR 7.20,

o . ro— e\ o o

PLACE SYSTEM BETWEEN FERE

R EX L) s a2+ X(2) w24 X () ua 21,
FI2)=2.#X(1)wx24X(2)wu2-4.%%X(3)

B FU3)=3,uX(1)ma2-4.aX(2)4X(2)uu2_ o N

C AND HERE

C

- -

[F{NMETFAD JEQe 4) FX2=F (1)
e - FEAMETEZC LEQ. _4) RETLRA
IF(IFLAG +EC. 1) CZ T2 1CC
Fx2=C-_ - . _ _——
Ce2 <C I1=1,IS
,cx2(1>‘ — _
FI(I)'F(I)

50 FX2=FXZ+F(1)ws2
IFLAI:I
[F(MCTHED ,EQ. 2) Rt[LRN o _ . N
Ge 17 ¢ '

JOO CeNTINYE ‘ o

IFIMETEZD JEQ. 2) G 12 2CC
Ce 126 1=1,1S e e
CFI{O) = (F (D =F1{I) /CEL

120 GX2(TCAUNT)=GX2(ICHUNTI+2.«F1(1)sDF1(T)

121 X(IC2UNT)=Xx(ICQUNT)-DEL

ICZUNT=ICOUNTHL ‘ L - _

IFCICZULNT JLE. IS) Ge T2 ¢

oL RETLON

200 L2 205 1=1,18S

CFLID)=(F(I)-F1(1))/DEL
CX2(1)=F1(1I)

205 PAR(T,ICRUNT)=0F1(I)

G2 12 121

ENC

e =" ——— . st o o e——

ety o ety semmeii o metwe ama ae e e ewmmm——— o

Bl LT P, —————— e
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PROGRAM LISTING B-2

METHOD=2 e UKNOWNE=3e XINITL= 030 els

[TLEST=29 /

B1-7
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PROGRAM LISTING B-3

NEWTZN RAFKSEN METHEC SELECTEC#husannsnux

]
@

Bl

SEC ______C.493S8C(CE C5 E&CSEC C.2S€2G1€ECE_CT .
DELTA X = C.11€144C€E C1. _ X = _ C.l4€144C€E C1
DELTA X = 0.S23C775€E CC__ X =  C.622CT775SE CC
DELTA X = C.2316G218E CC_ X = C.421€S217E CC

JDELTA X = -0.5284€8€2: CC X = C.S55267194€ CC

CDELTA X = =0.11S6C527E CC__ X =  €.5C247217E CC
DELTA X = -C.58C3C45¢E-CL X = C.2727€271E CC
DELTA X =  =0.15257811Ff CC_ X = _ C.8CC3S2EZE CC
DELTA X = =0.€8222C1GE-C2 X = C.4GEC4ESEE CC
DELTA X = -0.28:4C838i-C2 X = C.36S538€2E CC
DELTA X =  =C.15CCSE€ECE-C1 X =  (C.76852881SF CC
DELTA X =  =0.374573CS5E-C4 X = C.4G€€E114SE CC
CELIA X = —0.1572€6€4CE-C4 X = C.36SG22€EEE CC
DELTA X = =0.19CS€2€1E-C3 X =  C.T78S1STS€E CC
DELTA X = _ -C.10(2C8CSE-CE& X = Ce4G€E112CE CC
DELTA X _= -0.49€238363E-CT X = C.365G22€2E CC_
DELTA X = ~0.E15544€86-C6 X = C.78516€6S2E CC
DELTA X = £.S22S4171E-C8 X =  C.4S5€€113SF CC
DELTA X = 0.517G21€3E-C8 X = C.365622€2E CC
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PROGRAM LISTING B-4

_SELLTICN T2 THE SYSTENM
C.7€6216¢€53€ CO
C.45€€61139E €O

€& _TTERATIENS

C.26692283E CO

Bl
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APPENDIX B-2
FALSE-POSITION PROGRAM USER'S MANUAL

This program is designed to find the roots of the equation F(X) = 0

where F is a function defined through a FUNCTION subroutine, Moreover,

the subroutine ZEROS is provided with a tool called recursivity which

enables it to solve a set of several implicit equations such as

Method

F(X, Y, 2, ...)=0
G(X, ¥, 2z, ...)=0

H{X, ¥, 2, ...)=0

Three steps are to be distinguished.

An iterative process in order to find a change in the sign of the

function. This process may be carried out through an arithmetic

or a geometric iteration,

When a change in the sign has been found, one of the following

methods is used in order to reduce the interwval in which the

root lies:

a,

if a and b define the bounds of the last interval refined by

2 above, an approximation of the graph of f on the interval

(a, b) is the straight line g(X) joining the points (a, f(a)) and

(b £(b})). If the evaluation of the slope of g(X) is within prescribed
precision, a new point ¢ of the interval (a, b) is selected where
g{c)= 0and f(c) £ 0 (or c is the root). The smaller new
interval is (a, c) or (¢, b) depending on whether f(a), f(c) < 0

or f(c), f(b) < 0. Hence this method will be elected if the

slope of the straight line g(X) is varying slowly and can be

computed within desired accuracy,

B2-1
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b, if f is rather small in the interval (a, b) and consequently a
precise evaluation of the slope in "a'" above is impossible, a
constant weak slope is tried in an attempt to approach f on
the interval (a, b) with a straight line and thus, determine a
peint ¢ on (a, b) closer to the root, Hence a new interval

smaller than (a, b) is determined,

The choice between those two methods is determined before each
iteration through a series of tests on the results of the former

iteration.

The output process: Before each iteration, tests will be performed
in order to determine whether or not the output process has to be

started, It will be started in four instances:

a, F(X) =+ normal zero. A solution has been found.

b. the interval around the root is less than or equal to the

absolute error corresponding to the precision defined in the

calling sequence,
c. there is no solution in the given interval. (See Error Messages.)

d. an error has been committed in the calling sequence. (See

Error Messages.)

The subroutine ZERO is to be called as a Fortran IV subroutine

through the calling sequence:

CALL ZEROS (X, XT, FXT, RATIO, PRECI, XMIN, XMAX,
6HTTPPRR, FONC, X1, X2,..., X9, X10)

or through its MAP expression,

Description of the arguments listed in the calling sequence:
The argument X, FONC, X1, X2, ...., X10 must be written
with identifiers. The others (except the Hollerith arguments)
can be identifiers or constants according to the wish of the pro-

grammers.
B2-2
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XT

FXT

RATIO

PRECI

XMIN

XMAX

6HTTPPRR
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argument of the function on which the search of the root
is performed, After the return from ZEROS, the location

X contains the value of the root,

when ZERO is called, XT must be equal to an approximate
value of the root if the programmer knows this approximate

value, Otherwise select XT=0.

the corresponding value of the function, Otherwise select
FXT = 0. After the return from ZEROS, XT and FXT
are set to the values computed during the last step of the
iterative process, so that the program is initialized

for the search of a new root,

must be chosen positive for an arithmetic iteration, greater

than 1 for a geometric iteration,

relative precision to be obtained on the variable, The
maximal precision is the one of the computer, i.e,,

277 = 0.74.107%,
lower boundary of the interval where the search of the

root is performed,

upper boundary of the interval where the search of the

root is performed,

this represents a code of six Hollerith characters, divided

in three groups of two letters and defining:

TT: the type of iteration ,

1 = X,tRATIO
n

= X *RATIO

either AR: arithermetic iteration Xn+

or GE: geometric iteration Xn+1

PP: either the position of the initial value XT with

respect to the root

B2-3
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IN if XT<ROOT
SU if XT>ROOT

or the direction of variation in the interval of study

either
CR if the function is negative before the root,
positive after,

DC if the function is positive before the root,
negative after,

UN if the direction of variation is unknown. In this

case the subroutine will manage to search the
root in the direction along which the absolute
value of the function is decreasing.

RR: when an exact value of the root has been found, this
code enables the programmer to choose between the

two values of the variable around the root, through

DF the lower value,
EX the excess value,

BO the best of those two values (i.e., the one for
which the function takes its smallest absolute
value).

Examples 1) 6HGEINBO

FONC

2) 6HARUNEX

this is the name of the FORTRAN IV function which
calculates the operator which is to be zeroed. This
function has at most ten arguments; some of them
are variables on which the search of the solution is
performed. The others are mere parameters whose
value is given before calling ZERO. The name of the

function must appear within an INTERNAL instruction

-in every program, subroutine or function using ZERO,

X1, X2,

The function must be defined through a FUNCTION
subroutine (see EXAMPLE).,

X3, ..., X10 names of the arguments of FONC. They
are FORTRAN variables (see before).
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Recursivity_'

This tool makes it possible to call ZERO from the
subroutine FUNCTION which has been called by
ZERO itself,

MAIN

Y

Y

Y

lst Stage 2nd Stage 3rd Stage

-
N N

Y

-

To each stage of the computation corresponds one block of
instructions and parameters, which is generated through a macro-instruction,

In order to save cells, it is possible:

I R N N B I G BN B O B B B BN BE D T B =
N
=
b
O

B2

'
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1) to set the number of blocks (or order of the recursivity) equal to
the number of equations in the system to be solved,

2) to set the number of arguments in the functions equal to the
desired number, The instruction to be modified in order to
realize 1) or 2) are written under the label "parameters of

dimension" (see listing):

N SET 10
NNN SET N + 16
SIZE BLOCK (1,2,3,... ETMAX)

1) will be realized by setting ETMAX, in the address part of the
SIZE instruction, equal to the number of equations in the system,
2) will be realized by setting the number of arguments in the

address part of the N instruction.

Example: for a system of 2 equations with 3 arguments

N SET 3
NNN SET N + 16
SIZE BLOCK (1, 2)

Restrictions

For reasons of accuracy and feasibility, it is not advised to use

the subroutine ZERO for systems which contain more than four equations.
Beyond this number, the accuracy of the result depends a great deal on the

sophistication of the equations and the run time becomes excessive,

Examples (precision desired: 0,000001)

Type of Problem Duration (sec) Precision Obtained
11th Order Equation 0.017 0.000001

Two Equations (of 11th order) 1,60 0.000001
Three Equations (of 11th order) 3,20 0.001
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The results were obtained for highly sophisiticated problems and can be

considered as upper limits for each type,

Remarks

The subroutine can solve any system of equations as long as they
are continuous with respect to each variable in the interval of
study. But the programmer must pay attention to the salient

features of the system he wants to solve,

Generally speaking, the subroutine ZERO will not find a solution

when the four following cases occur:

a, the system has a multiple root; this can be easily detected
by the programmer by carefully studying the equations before
he submits them to ZERO,

b, the root of the system lies inside of an interval whose length
is inferior to the ratio.

c. one of the functions of the system starts varying in a direction
which is inconsistent with the direction indicated in the
Hollerith code of the calling sequence. In such a case, the
root is searched in the wrong direction and the subroutine
stops when it reaches one of the boundaries,

d. there is simply no root in the given interval,

If N is the mean number of iterations that will be needed to get
the root of one equation, in the case of three equations, the function
FONC3 will be computed N3 times, FONC2 NZ times and FONCI1
only N times. It is then advised to choose the most sophisiticated

function as FONCI1 and the most simple of the three as FONC3,

Error Messages

The error messages are written through an expanded WRITE 6

sequence, (This output order does not need any more than the normal
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IBJOB processor), There are three messages:

1, TOO MANY ARGUMENTS

when one of the functions has more than 10 arguments.
2, INCORRECT CODING

when a mistake has been made in the Hollerith code of the calling
3. NO ROOT IN THE INTERVAL

A CALL EXIT is done after the output of the message,

This error procedure can be easily adapted to the standard one of

the installation.

Storage Required

7318, i.e., 473 cells

The whole working storage is within the subroutine itself and no

common or other special storage is needed.

B2
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Sample Computer Run for the System

-2
2x - 3,18309886 log T ! =0
™ 2 2.,2 2 2 2
- X (l-y 2"z -y Y/ zy© (1+42°)-5 =0
z - ,14271816 =0
B2-9
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3 LMSCJS ,
C54 - EFN SOURCE STATEMENT - IFN(S) -
\ .
l EXTERNAL F2NC1 |
XT=0eC1 |
FXT=n,
CALL ZERZS(X,XT;FXT,1.2,0-000001"5-95-.6HGEINBZ,FZNC11X7Y1Z)
l L WRITE(6,140) X9YeZ . — S -
100 FORMAT(LlHG 9 LOX92HX=9E15.895X92HY=,E15e895Xy2HZ=49E15.8 )
o STaP R
. " END
' LMSCJS o |
C54A - EFN SBURCE STATEMENT - IFEN(S) -
' FUNCTIGN FONCL1(X,Y,2)
EXTERNAL F@NC2
YT=0.01
. FYT=0.
e . CALL ZERAS(YyYT4FYT,0.01,0.000001,=2¢45.96HARINBD,FONC24X,Y,2) .
FONC1=2.%#X-3,18309886%ALBG((1le=2)/{1le+Z))-10
. END I
, C548 - EFN SOURCE STATEMENT = IFN(S) -
l FUNCTIIN F@NC2{(XsYy2) . .. e
EXTERNAL FONC3
. IT=0.1 . . L R
FIT=7.
CALL ZERAS(Zy2T4FZT40.01,0.0000019=2.55.+6HARINBE,F ONC3sXe¥eZ ) _
- FZNC2=1.57079632*X*(lo"Y**Z*Z**Z)*(Z**Z"Y**Z)
l_ 1 JU/Y#e2/(1e4I%%2)=5. S
RETURN
l END ) ) I . S
. B2-10
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SOURCE STATEMENT - [IFN(S) -

FUNCTIEN FBNC3(X,Y,2)
FZNC3=2-7,14271816

RETURN L
END
LMSCJS IBLDR S '-
UNUSED CBRE 77775 THRU 717777
X= 0.42591367E-01 Y= 0.41400141E-01 2= 0.14271816E 00
B2-11
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APPENDIX C-1
PROGRAMMER'S MANUAL

A description of each subroutine with flow charts is given in this section
and is intended for use by a programmer attempting to understand or change
the computer program, A list of symbols is given with R indicating REAL
and I indicating INTEGER variables, A listing of the program is found at the

end of this section,
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Are Contour
Plots Desired

No

Plot

Contours
Has a Particular Yes ifl::td |
Method Been Req. etho
Stop Requested
No
< No /" wags the Method Yes Sto
i KSuccessful P
Flctcher- Has Fletcher-
Powell Powell Been
Routine Tried
Yes
Yes Was Fletcher- No
Powell
Successful
Newton- No Has Newton-
Raphson Raphson Been
Routine Tried
Yes
Yes Was Newton- No
Raphson
Successful
No Has the Scarch Yes
Search- ; Plot —
Routine < < ?:‘;:;"e Been Contours S'Op
Yes
Was the Search \ No
Routine Successfnlj
Stop

Logic Flow of Composite Program
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INPUT SYSTEM
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v

R ; NO
( IS £, < () and £(5;) }—_

YES

Flow Chart of Fletcher-Powell Technique
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NEGIN

{

Rrad né¢il neta of simplex
prants P, for system(“1 . 0

lz-o

{ =0
n

¥

Compute Y, F(p|) where
Fe f;ul)‘

g

A
Determine highest value
vy * Fip)

Determine lowsst value
v, = Fip)

Y

Calculate centroid p

- 1 &
"K?;,’i

¥

Reflection:
P e (i+a)p-ap,

Y

. .
Compute y(p ) e y

y .
. No Yoo o
Q ey« y, H Ie y.> y.l/h Is Y.> n }N
Yes No Yes {
\
! Replace p, by p.
Expansion:
-
PN %
.0 *e
Yy =yip ) e
Contraction: p = ‘Ph”l -Mp
. .
Compute: y(p )=y
J
No
ls y"< y’ \ o ‘
. ( J e Yeo
{ Yes ] sy > 7,

N
L1] -« °
Replace p, by p Replace p, by p

Replace all ?; by
1

- 4+

; neptuce b o7 (e
No m
Yeo
o STOP

Simplex Method Flow Chart for a Function of an
Arbitrary Number of Variables
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By Common Blocks

CNTR

DATA

ERROR

Hl1

-INIT

XL
XR
YB
YT

N

F(1300)
X(1300)

Y(1300)

ITEST

IER

H(20, 20)

IS

IN
DEL

EPS

METHOD

LMSC/HREC A783333

LIST OF SYMBOL.S

left most position for x-axis of contour
plots

right most position for x-axis of contour
plots

bottom most position of y-axis of contour
plots

top most position for y-axis of contour
plots

number of contour plots to be plotted

table of function values at each grid
line intersection on contour plot frame

table of x-values at each grid line
intersection on contour plot frame

table of y-values at each grid line
intersection on contour plot frame

maximum number of iterations to be
allowed before solution technique con-
sidered unsatisfactory

error flag # 0 indicates solution
technique has failed

identity matrix initially and modified
in search routine in computations of
terms dependent on gradient leading
to minimum

size of system to be solved (number
of unknowns)
order of the system to be solved

increment for rate of change of unknowns
in computing partials

test criterion indicating accuracy
desired in solution

flag indicating solution technique to
be used
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"

ITER

SRCH P(21, 20)
ALPHA
BETA
GAMMA

By Subroutines

DRIVER COMMON

ITABLE(3)
K1

X(20)

CONTOR COMMON

DF
DX
DYy

FC(100)
FMAX

-

FMIN
FO
Fl

F2(20)

q W Hx

ERROR

H1
INIT

CNTR
DATA
INIT

i

LMSC/HREC A783333

counter, keeps a running count of number
of iterations used in solution techniques
table of simplex point for search routine
reflection coefficient in search routine
contraction coefficient in search routine

expansion coefficient in search routine

‘table of solution techniques attempted

that have failed

counter, counts number of solution
techniques tried

table of solutions to unknowns, Initially
contains initial estimates to roots

contour value increment for successive
contour plots

x increment for construction of grid
lines or contour plot

y increment for construction of grid
lines on contour plot

table of values of contours to be plotted

maximum functional value on contour
grid

minimum functional value on contour
grid

contour functional value for which

x and y are plotted

upper functional value available
closest to FO

lower functional value available
closest to O (only F2(1) is used here)

Cl1-7



EVAL

IBOX

IBX
IBY

IFLAG
IFL2

ITABLE(1250)

X
I1
12
J
NS
v
Vi
\'24
X1
X2
XV

YV

COMMON
DFL(20)

F(20)

FX2
F1(20)
GX2(20)
ICOUNT

PO B e

e,

INIT

e

XX =

LMSC/HREC A783333

grid box number (there are 1225 in
total grid frames) under consideration
for contour plot values

column number (x-grid line) under
consideration

row number (y-grid line) under con-
sideration

first time through flag (if 0 first time)

even (= 0) and odd (=1) row under
consideration

table of flags determining direction of
box diagonal (=0 implies Nto N + 3
and =1 implies N+ 1 to N + 2)

a particular value of ITABLE
index for first point '
index for second point

index used in loading ITABLE
plotting symbol selector
number of contours - 1
functional value at first point
functional value at second point
x-value to be plotted

y-value to be plotted

intermediate storage for most recent
x-value in computing contour values

intermediate storage for most recent
y-value in computing contour values

table of increments of functions for
computing partials

table of functional values of system of
equations

sum of the squares of the functions
functional values
functional values

counter for number of times through
routine computing partials

Cl-8



FPOWEL

IFLAG
PAR(20, 20)
X(20)

COMMON

A(20, 20)
ALPHA

ARG
Al

A2

B(20, 20)

D1

ETA
ETA1
E1(20, 20)

E2(20, 20)
F

FXAS
G(20)

GU(20)
GXAS(20)

IMIN

S(20)

SIG(20)
T1

o W AN =

ERROR
Hl
INIT

NoR” AT

U~ I B

o

P

LMSC/HREC A783333

~

first time through flag (=0 first time)

table of partial derivatives

table of x-values for system

i

array of storage for A; matrix

1]

storage for @ in minimization process
= (1 - (T2 + W - Z)/(T2 - T1 + 2W))

= square root argument for 7%~ Tl T2

= storage for a;r Yi
= storage for Y'.r H.Y.
i 71T

= storage for B, matrix =

= storage for g(Xi)T §i

= storage for 7§
= storage for m o= (-2F)/D1
= -H, Y,

i7i
= E1Y)
i
= value of sum of squares of functions

= value of sum of squares of functions
at new iterative point

= gradient of functions of Xi

= gradient of functions of U

= gradient of functions of Xi+1

= maximum number of times through
minimization process allowable

= -Hi g(il)

x increment in iterative procedure

T 1
)"

[}
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INITIAL

LINTBL

NEWRAP

T2
U(20)

w

W (20, 20)
X(20)

XAS(20)
Y(20)
z

COMMON

IERR

X(20)
X1(20)

COMMON
Fl
F2(20)

I

J
X1
Yl

COMMON

DX(20, 1)
F(20)

PAR(20, 20)

WK(20, 20)

e

XWX WA X

CNTR

- ERROR

H1
INIT
SRCH

W o

ERROR
IT

ARG

1]

1

LMSC/HREC A783333

o)
[ N

‘/ZZ - Tl T2

dummy storage for calling EVAL

x-iterates at ti
x-iterates at ti+1
GXAS. - G.

i i

3/n(F - FU) + T1 + T2

error flag for MAVRICK routine
(;é 0 indicated error)

‘initial estimates to roots

save storage of initial estimates

functional value at first point

functional value at second point
(only F2(1) is used)

row index
column index
interpolated x-value

interpolated y-value

X increment for x-iterates
values of functions
partial derivatives

inverse matrix (D~ 1)
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PRINT1

SRCH1

X(20)

COMMON
X(20)

COMMON

G1(20)
ITABLE(2)

IX1
IX2

N
PCENT(20)
PH(20)
PL(20)
PNTS
PS(20)
PSS(20)
W1(20, 20)
X(20)
X1(20)
Y(21)

YH

YL

YS

. YSS

R A A A R I R
1]

INIT

INIT
SRCH

LMSC/HREGC A783333

x-values

roots to system of equations

functional values

keeps track of location of YH(ITABLE(1))
and YL(ITABLE(2))

index for YH

index for YL

size of system + one
centroid

points yielding highest functional value

points yielding lowest functional value

system size (floating point

P* = (1+a)P -aPh

P*¥ = (1 +7)P* -7vP

dummy storage for calling EVAL
roots to equations

x-values input to EVAL

y-values = F(p)

highest y

lowest Y

v o= y(P¥)

y** = y(P*)

Cl-11
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SUBROUTINE DRIVER

The driver controls entry to all solution techniques including entry to

the input and output routines,

Equations Used: None

Labeled Common: ERROR
H1
INIT

Dimensioned Storage: ITABLE (3)
' X (20)

Called from: System

External References: CONTOR
FPOWELL (X)
INITAL (X)
NEWRAP (X)
PRINT1 (X)
SRCH1 (X)

Input: None (control region)

Output: None (control region)
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SUBROUTINE INITAL (X)

Reads input data, checks for read errors, and initializes estimates to

roots,

Equations Used: None

Labeled Common: CNTR
ERROR
H1
INIT
SRCH

Dimensioned Storage: X (20)
- X1 (20) - e

Called from: DRIVER

External References: MAVRIK

Input: Data cards

Qutput: Initial estimates to roots, desired computation options and constants

Cl-13
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SUBROUTINE EVAL (X, FX2, GX2, PAR)

- Evaluates the system of equations for a given set of x values, computes

sum of squares of functions and partial derivatives,

Equations Used:

af, 8f af |
axl' 9%, e axn
afz sz of,
Bxl’ Ox, " " 9x
of af of
n _n -2
L.€3x1 8x2 axn—
where
of. n
i
% = 2 26 A
1 k=1
with
Af, = (fk_ - flk)/Axi
fk = f(xk) for i £ n
fk = f(xk + Ax) fori= k

IL.abeled Common: INIT
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Dimensioned Storage: DF1 (20)
DX (20)
F (20)
F1(20)
GXZ2 (20)
PAR (20, 20)
X (20)

Called from: CONTOR
FPOWEL (X)
NEWRAP (X)
SRCH1 (X)

External References: None

» Input: X-iterates

Output: Matrix of partials, sum of squares of functions, and values of each

function in system
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SUBROUTINE FPOWEL (X)

The Fletcher-Powell iterative technique is for solving simultaneous non-

linear algebraic equations,

Equations Used:

1) = &7+ (0P
T
Vi) - (g_fT;_f) - &5,
n
§; = -Hg(¥)
-2£(%.)
o= T
8(%;) " 5,
ﬁl =% + nsl
£(3,) = fl(al)2 ol 4+ £ (ﬁi)2

(@) of of \¥
utty du, "°° 3Ju
LB \9y n

[f(ii) - f(ﬁi)] + —g(ii)T §; + E(E:)T s,

N
"
J|w

[

—=T

2 ——T = — =
W = [Z - g(xi) Sig ui) Si]
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i+l

i+l

Hin

—~—7T

8(0,) 5, + W - 2

LMSC/HREC A783333

1

H. + A, + B,
i i i

Labeled Common: ERROR

H1
INIT

Cl-17
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Dimensioned Storage: A (20, 20)
B (20, 20)
E1 (20, 20)
E2 (20, 20)
G (20)

G4 (20)
GXAS (20)
S (20)

SIG (20)

U (20)

W1 (20, 20)
X (20)

XAS (20)

Y (20)

‘Called from: DRIVER

External References: EVAL(X, F, G, W1)
EVAL (U, FU, GU, W1)
EVAL (XAS, FXAS, GXAS, W1)

Input: Initial estimates (x;j)

Output: Roots to system of equations (x,)
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SUBROUTINE NEWRAP (X)

The Newton-Raphson iterative technique for solving simultaneous non-

linear algebraic equations,

Equations Used:

1 2 o . :
Fx + Fx + ... + Fx = fl(xl, Xo1 eee s xn)
1 2 n
F2+F2+...+F2 = -fo(x,, %5, v.. , X_)
X x X 2'V71 T2 n
1 2 n

Fn+Fn+...+Fn=-f(x,x,...,x)
x x b4 n'1 2 n
1 2 n
where .
of af
F1 = 1 Ax ., ]-.T‘2 = -2 Ax ., etc.
3 ~<'3x1 1 x1 Bxl 1
(i-1) (i-1)
.AXG = B \
where
F_afl 8f1 (?i—
8x1 8x2 e 0
sz afn
8x1 8xn
A =
of of
2 -
ax ® e 0 LB ax

|
=]
l

Cl-19



LMSC/HREGC A783333

-fl(xl, oy eee s xn)
B = ‘

-fn(xl, XZ’ cee xn)—

L.abeled Common: ERROR
INIT

Dimensioned Storage: DX(20, 1)

F (20)
PAR (20, 20)
WK (20, 20)
X (20)

Called from: DRIVER

External References: EVAL (X, FX2, F, PAR)
GASSIM (WK, IS, 1, DET, DX)

Input: Initial estimates (Xi)

Output: Roots to system of equations (xn)
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SUBROUTINE SRCHI1 (X)

LMSC/HREC A783333

The Simplex Method for function minimization of Nalder and Mead for

locating minima,

Equations Used:

ol

(e

¥
*%

tolol
P

(1 + o)P - aP,

*
Y
(1 +97)pP* -P

Y(P**)

BP, + (1 - B)P

n.
1
P, = -7721(13i + P
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Labeled Common: ERROR
INIT
SRCH

Dimensioned Storage: G1(20)
PCENT (20)
PH (20) '
PL(20)
PS (20)
PSS (20)
w1 (20, 20)
X (20)
X1 (20)
Y (21)

Called from: A DRIVER

External References: EVAL (X1, Y(I), G1, W1)
EVAL (X1, YS, G1, wWl)
EVAL (X1, ¥SS, G1, wWl)

Input: Simplex points

Output: Roots to system of equations
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SUBROUTINE PRINT1 (X)
Prints the solution to the system of equations input,

Equations Used: None

Labeled Common: INIT

Dimensioned Storage: X (20)

Called from: DRIVER

External References: None

Input: Solutions to system

Qutput: Printed solutions
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SUBROUTINE CONTOR
Plots contours on a grid of 35 lines by 35 lines,

Equations Used:

F..max - F,.min
1) 1)

N - 1 = AF

F. = Fijmin + (i - 1) AF -

or F

Fis min + (SF)7Y AR

Labeled Common: CNTR
DATA ~
INIT

Dimensioned Storage: FC (100)
F2(20) -
PAR (20, 20)
X1 (20)

Called from: DRIVER

External References: CAMRAYV (9)

GRIDIV (1, XL, XR, YB, YT, DX, DY, -6, -6, -6, -6,
-3, -3) :

LINTBL (I1, I2, X1, Y1, F1, F22, F0)
POINTV (X1, Y1, -NS)
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Input: Grid limits and number of contours desired

Output: Contour plots
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APPENDIX C-2
FALSE POSITION PROGRAM LISTING

C54E0001

* SUBRZUTINE ZERZS,CZMPUTES THE REZT BF F(X)=0

++

# CALLING SEQUENCE Tg SOLVE THE EQUATION FZNC(XyYseoee)=D
% CALL ZERBS(XyXToFXTyRATIB yPRECT g XMINy XMAXy 6HTTPPRRy FANCyX 9Y 90 e )
*

*  INDICATZRS GUIDE S

* [ E XX EXEEEE-E-R X X X J

&

« 1)CEDING BITS 26 T@ 35

*

* TBIT 26=1  ARITHMETIC TABULATI®N

* BIT 27=1 _ GEOMETRIC TABULATI@N S
* BIT 28=1 INCREASING FUNCTI®N

* BIT 29=1_ _DECREASING FUNCTI®N

» BIT 30= INITIAL VALUE SUPERIZR T® THE REZT
K BIT 3}m} INITIAL VALUE INFERIGR T8 THE R29T

u BIT 32=1  FUNCTIZN WITH AN UNDEFINED M@DE ©F VARIATIEZN
. BIT 33=1  SUPERIGR VALUE
M BIT 34=1 INFERIOR VALUE

* BIT 35=1  BEST VALUE @F THE RESULT

*

s 2)LINKAGE TABUL _ BITS 15 Tg 17

|

] !
t*#t##*m#nt'##***#'#t###v

"TABUL =2  CO@MPUTATIZN @F F(V) FBR V=VT o
TABUL =5  THE M@DE ZF VARIATIZN IS UNKNZWN.X=XT+PAS 2R X=XT#PAS
TABUL =1  SEARCH @F THE B@UNDARIES N

TABUL =0 BZUNDARIES FOUND,SEARCH @F THE ROQZT

)LINKAGE AIGD BIT 14

w l

) ”AIGD““éi”“rNTERsECTI@N"wITH“A‘FIXED'sL@bE"LINE’""
AIGD =G  DICHZTemMy

+ S)CPUNTER BITS 7 AND 8

ADDS 1 T8 ITS CONTENT EACH TIME ONE ADDS A BIT T@ ONE BF THE
BOUNDARIES.THIS BPERATION CAN BE OENE ONLY 2 TIMES

6)FLAGS 1 AND 2 BITS 5 AND 4

FLAGL =1 _ IF XT IS LESS THAN SR EQUAL TJ XMIN

7)ERRZR BIT BIT 3

|
|
|
|
FLAG2 =1  IF XT IS GREATER THAN @R EQUAL T@ XMAX
INDICATES THAT THE VARIABLE REACHEC ZNE @F THE BZUNDARIES

ca2-1
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ENTRY LERDS

O MACRZ-INSTRUCTIOZN GENARATING THE BLZCKS e

RREEaaw OF PARAMETERS RELATED WITH EACH STAGE | mmnuann

dLICK MACRZ I e - o
IRP I ) —

RATE-I BSS 1

[ND-1 BSS 1

vi-1 BSS 1

FvI-I__ B8SS 1

vS-1 BSS 1

FVS-1 BSS 1 o

FVA-1 BSS 1

V-1 BSS 1

_MA=1  BSS 1 .

M=1 3SS 1 o

LKDR-1 PZE
BCI 1,2ER@S=-1 —~ ~ ~ T T

CALL-I TSX %, 4
TRA RET.AP

_ PIZE 4 3LKDR-1I

8SS N
SPACE 2
IRP - -
ENDM BLOCK

 #w#eewsxs  PARAMETERS PF DIMENSION R,

N SET 3 e )

NNN SET N+16

SIZE BL3CK (142,3)

o #RESTAURATI@N =

ZERZS TRA - STI S
CLA LKDR1,2 RESTAURATIGN ©@F THE ADDRESS OF INDEX 4
STA AXT4 ' ' ' ’
TXI #+]1 32 9yNNN
SXD STAGEL? S

X2 AXT *iy 2 RESTAURATIEN g£F THE INDEXES

X1 AXT #iy ] A

AXT4 AXT L2 X%

T LDI PRATI 7T T PRPTECTICN ZFTTHE INDICATZR REGISTER 77
TRA 1,4 RETURN T@ THE CALLING PRZGRAM

Cc2-2




